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SUMMARY 

Structural performance and resizing (SPAR) ... lite-element thermal analysis computer program was used in the 
rwntry heat transfer analysis of the space shuttle orbiter. One midfuselage cross section and one midspan wing 
segment were selected to study the effects of internal convection and internal radiation on the structurd temperatures. 
The effect of internal convection was found to be more prominent than that of internal radiation in the orbiter thermal 
analysis. Without these two effects, the calculated structural temperatures at certain stations could be as much as 45 
to 90 percent higher than the measured values. By considering internal convection as free convection, the correlation 
between the predicted and measured structural temperatures could be improved greatly. 

NOMENCLATURE 

CP 
Ci 
c2 1 

HRSI 

FRSI 

Fi j 

9 

h 

i 

JLOC 

i 
K2 1 

K3 1 

K4 1 

k 

L 
- LRSI 

P 
R2 1 

RTV 

SIP 

T 

SPAR 

STSJ 

T 

specific heat, B tu/lb-" F 

correlation parameters in free convection equation 

two-node convection elemcnt 

high-temperature reusable surface insulation 

felt reusable surface insulation 

radiation view factor from element i to element j 

acceleration due to gravity, in./sec2 

free convection heat transfcr coefficient, Btu/in.2 -sec-"F 

integers, 1.2.3, .  . . 
joint location (or node) 

integers, 1.2.3,. . . 
two-node conduction element 

three-node conduction element 

four-node conduction element 
conductivity, Btu/ft-hr-"F or Btu/in.-scc-"F 

length, in. 

low-temperature reusable surface insulation 

pressure, lb/ft2 

two-node radiation element 

room temperature vulcanized 

strain isolation pad 

reflectivity 

structural performance and resizing 

space transportation system 5 

temperature, "F or OR 



I 
TC thermocouple 

TPS thermal protection system 

Tg 
T w  average wall temperature, OR 

t time, sec 

XO 
5, Y, 2 

YO 

bulk temperature of gas, OR 

station on the x axis 

rectangular Cartesian coordinates 

station on the y axis 

I 7 weight density, lb/ih3 or lWft3 

I E emissivity 

c1 viscosity, lbdin. -sec 
P density, lb/ft3 

INTRODUCTION 

In past reentry heat transfer analysis of the space shuttle orbiter (Gong and others, 1984; Gong and others, 1982; 
KO and others, 1981, 1982. 1986). the effect of internal convection was neglected because it was assumed that the 
effect of internal convection was secondary as compared with the effects of conduction and internal and external 
radiations. The results of the past analysis showed excellent agreement between the calculated and measured thermal 
protection system ('IPS) surface temperatures over the entire reentry time span, including the period after touchdown 
(KO and others, 1986,1987). However, the calculated and measured substructural temperatures of the fuselage and 
the wing lower skins agreed nicely only until the time immediately before touchdown (KO and others, 1986,1987). 
The agreement broke down a k r  touchdown, and the measured substructural temperatures consistently showed lower 
values. It was revealed by the manufacturer of the orbiter that air vents at the orbiter wing mts were usually opened 
to allow the external air to enter the orbiter interior to eliminate the danger of collapsing the orbiter when it descended 
to denser air environment (at t = 1400 sec, or 100,OOO ft altitude). The air ingested into the orbiter would definitely 
result in internal free convection cooling and may possibly result in forced convection cooling. It was felt (based 
upon the results of the measured structural temperatures) that the major mode of heat transfer was free convection. 
Consequently, to improve the agreement between measured and calculated structural temperatures, a thermal analysis 
was made with the inclusion of internal free convection (KO and others, 1987). 

The results of this analysis showed that the agreement was improved but was still not satisfactory. This indicated 
that the ingested air resulted in mostly forced convective heat transfer rather then free convective heat transfer as 
previously thought. Therefore, an analysis was made with internal forced convection (KO and others, 1987). Since 
the air velocities in the wing bays were unknown, it was necessary to make estimates of the velocities. The velocities 
were estimated so that the resulting heat transfer coefficients were sufficient to produce the required cooling and 
bring the calculated temperature into good agreement with the measured data. However, it has subsequently been 
discovered that there are errors in the free convection code of the structural performance and resizing (SPAR) thermal 
analyzer computer program. These errors caused the calculated free convection heat transfer coefficients to be much 
lower than the true values. With this new information, it became most probable that the major mode of internal 
convective heat transfer was free convection as initially deduced. 

I The purpose of this report is to calculate orbiter fuselage structural temperatures and recalculate the orbiter wing 
structural temperatures using correctly calculated internal free convection heat transfer coefficients, and to compare I 
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the calculated results with measured temperatures. We also compare the relative intensities of the effects of internal 
free convection and internal radiation on the structural temperatures of the orbiter. 

DESCRIPTION OF PROBLEM 

The locations of midfuselage cross section FS877 and the midspan wing segment WS240 selected for the reentry 
heat transfer analysis are shown in figure 1. The reentry heating rates are based on the space transportation system 
5 (STS-5) flight trajectory shown in figure 2. The existing SPAR thermal models set up for FS877 and WS240 
are shown, respectively, in figures 3 and 4 (Gong and other, 1984; Gong and others, 1982; KO and others, 1981, 
1982, 1986, 1987). Based on the STS-5 surface heating rates shown, respectively, in figures 5 and 6 for FS877 
and WS240, and the thermal properties shown in the appendix, the previously calculated TPS surface temperatures 
agreed nicely with the flight-measured temperatures from the beginning of reentry (t = 0). until after rollout (figs. 7 

time ( t  = 0) up to t = 1700 sec, and after that the agreement broke down if the internal convection effect was 
neglected. The finite element solutions overpredicted the structural temperatures after t = 1700 sec (figs. 9 and 10). 
Since most of the convective cooling effect occurred after touchdown and rollout when the ingested air has lost its 
flow velocities, the internal convection is free convection rather than forced convection. The problem is to use the 
SPAR program, with the corrected internal free convection heat transfer coefficients, to calculate (or recalculate) the 
structural temperatures of FS877 and WS240 and also to compare the relative magnitudes of the effects of internal 
free convection and internal radiation on the orbiter structural temperatures. 

L and 8). However, the calculated and the measured substructural temperatures compared very well from the reentry 

INTERNAL CONVECTION 

Fuselage 

Normally the effects of free convection would bc accounted for by introducing five-node free convection (C53) el- 
ements in the SPAR program (Marlowe and others, 1979). The program would then compute the free convection 
heat transfer coefficient and the corresponding convective heat transfer. However, because of the shape of the fuse- 
lage cross section, the SPAR program could not handle the free convection calculations. Therefore, internal free 
convection in FS877 was Simulated by using the two-node forced convection (C21) elements and calculating the 
heat transfer coefficients for these elements by using the free convection heat transfer equations found in the SPAR 
program. In figure 11, we show 96 C2 1 elements attached to the inner surfaces of the cargo bay and the glove of the 
existing fuselage thermal model FS877 (fig. 3) to model the internal convection. 

Wing 

The bays of the wing model WS240 have distinct sharp comers and the five-node free convection SPAR elements 
(C53) can bc used to account for free convection heat transfer. However, as mentioned in the Introduction section, 
there are errors in the free convection code of the SPAR program which result in the computation of emneous free 
convection heat transfer coefficients. Therefore, free convective heat transfer was included in the wing analysis 
by using four-node forced convection (C41) elements and calculating heat transfer coefficients by using the free 
convection equations that are in the SPAR program. These hand-calculated free convection heat transfer coefficients 
were input to the SPAR program by data set CONV PROP In this way, the e m r  in the free convection computer 
code was circumvented, and the effects of free convection heat transfer were simulated by using C41 elements. In 
figure 12, we show 88 C41 elements set up for WS240 four-bay cavities. 
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FREE CONVECTIVE HEAT TRANSFER COEFFICIENTS 

The internal heat transfer coefficient h (Btu/in.2 -sec-OF) were calculated from the following equation for free 
convection: 

hL - = C1 G,c" P,? k 
where 

p =- CPCL 
k r -  (3) 

Ci (i = 1,2,3) = correlation parameters 
g = acceleration due to gravity, in./sec2 
p = density 1b/i11.~ 
p = viscosity, Ibm/in.-sec 
L = side length, in. 
C, = specific heat, Btujlb-OF 
k = conductivity, Btuh-=-OF 
Tg = bulk temperature of gas, OR 
Tw = average wall temperature, OR 

p = 2/(Tg + T Y )  
AT = lTg - Twl, O F  

The properties are evaluated at the average of the gas and sidewall temperatures. The values of the correlation 
parameters C1, CZ , and C3 are given in the following paragraphs for vertical and horizontal surfaces. A surface can 
be considered vertical if the surface is less than 30" from the vertical, and a surface can be considered horizontal if 
it is less than 30" from the horizontal. 

Vertical Surfaces 

C1 = 0.59, Cz = 0.25, and C3 = 0.25 for GrPr < lo9 (laminar) 
C1 = 0 .lo, 02 = 0.333, and C3 = 0.333 for GrPr > lo9 (turbulent) 

Horizontal Surfaces 

(1) Heated surfaces facing up or cooled surfaces facing down 

CJ =0.54,C2 =0.25,andC3=0.25forGrPr< 107(laminar) 
C1 = 0.15, C2 = 0.333, and C3 = 0.333 forG,.Fr > lo7 (turbulent) 
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(2) Heated surfaces facing down or cooled surfaces facing up 

Cl = 0 . 2 7 , ~ = 0 . 2 5 , a n d C 3 = 0 . 2 5  

For both FS877 and WS240, the gas temperatures were assumed equal to thc ambient air temperatures (table 1). 
The wall temperatures for FS877 and WS240 were determined from the flight-measured temperatures obtained from 
thermocouple (TC) locations shown in figures 13 and 14 (Gong and others, 1987). Part of those flight data is shown 
in figures 9 and 10. The heat transfer coefficients h for (21 and C41 elements were then computed for profile 
times of 1700, 1800, 1900, 2000, 2400, and 3OOO sec and are listed in table 2 for FS877 and table 3 for WS240. 
Heat transfer cocfficients were not computed for times prior to time 1700 sec because the comparison between the 
measured and calculated structural temperatures showed that air ingestion did not affect structural temperatures until 
approximately 1700 sec. 

RESULTS 

Fuselage 

Calculated time histones of the fuselage structural temperatures compared with flight-measured data are shown in 
figure 15. Thc dashed curves (taken from fig. 9 for 100 percent TPS thickness) are for the case when only the effect 
of internal convection was ignored. With the inclusion of internal free convection (solid curves), the structural 
temperature predictions were gcncrally improved greatly. The predictions at stations on the bottom of the fuselage 
and at the glove region agree quite well with the measured data. The agreement between the measured and calculated 
temperatures at the two locations on the side of the fuselage (JLOC372 and JLOC384) shows only a relatively small 
improvcment with the addition of free convection. The long and short broken curves in figure 15 are for the case 
when both internal convection and internal radiation were neglected. Without these two effects, the calculated peak 
fuselage structural temperatures at fuselage bottom could be as much as 50 to 90 percent higher than the measured 
data (at t = 3000 sec). Also, the magnitude of the internal convection is higher than that of internal radiation. 

Wing 

A comparison between measured and calculated structural temperatures for WS240 is shown in figure 16. The 
inclusion of free convection (solid curves) greatly improved the agreement between measured and calculated values. 
The agreement for the lower surfaces of bays 1.2, and 3 and the agreement for all the upper surfaces are quite good. 
However, the calculated values for thc lower surface of bay 4 are only in fair agreement with the measured data. 
This poorer agreement at bay 4 is probably due to the boundary conditions used in the analysis. It was assumed that 
the aft spar and web of bay 4 was perfectly insulated. In actuality, there was undoubtedly some heat loss that was 
not accounted for in the thermal model. . 
CONCLUSIONS 

Finite-element heat transfer analysis was performed on the space shuttle orbiter fuselage and wing under 
STS-5 reentry heating. With the introduction of internal free convection effect in addition to conduction and internal 
radiation effects, thc correlation between calculated and measured structural temperatures could be improved greatly. 
The effect of the internal convection was found to be larger than that of internal radiation. Without considering the 
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effects of both internal convection and internal radiation, the structural temperatures could be overpredicted by as 
much as 50 to 90 percent for the fuselage bottom skin and by 45 to 60 percent for the wing lower skin, respectively. 

Ames Research Center 
Dryden Flight Research Facility 
National Aeronautics and Space Adminktration 
Edwards, California, February 5,  I988 



APPENDIX-THERMAL PROPERTIES OF 
SPACE SHUTTLE ORBITER MATERIALS 

THERMAL PROPERTIES OF 
ALUMINUM (7 = 1751b/ft3) 

T, k, CP, 
OF Btu/ft-hr-"F Btu/lb-"F 

--- -420 13.0 
- 350 31.0 
-300 39.0 
-200 52.5 
-100 61.5 

0 69.0 
75 --- 0.206 

1 0 0  74.0 
200 78.0 0.215 
300 82.0 0.222 
400 84.7 0.228 
500 87.0 0.234 
600 89.4 --- 
800 92.0 

--- 
--- 
--- 
--- 
--- 

--- 

--- 

THERMAL PROPERTIES OF 
ROOM TEMPERATURE 

VULCANIZED (RTV) 

7 9  k, CP 9 

lb/fi3 Btu/fl-hr-"F BtuAb-OF 
88 0.18 0.35 

n .  
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THERMAL PROPEKI'IES OF HIGH-TEMPERATURE 
REUSABLE SURFACE INSULATION AND 

LOW-TEMPERATURE REUSABLE SURFACE INSULATION 
(7 = 9 1wft3) 

k, Btu/ft-hr-OF 
T, p ,  Wft2 
O F  0 0.21 2.12 21.16 211.6 2116.0 

-250 0.0050 0.0050 0.0075 0.0150 0.0216 0.0233 
0 0.0075 0.0075 0.0100 0.0183 0.0250 0.0275 
250 0.0092 0.0092 0.0125 0.0225 0.0316 0.0341 
500 0.0125 0.0125 0.0167 0.0276 0.0400 0.0433 
750 0.0175 0.0175 0.0216 0.0325 0.0492 0.0534 

1000 0.0233 0.0233 0.0275 0.0392 0.0600 0.0658 
1250 0.0308 0.0308 0.0350 0.0492 0.0725 0.0782 
1500 0.0416 0.0416 0.0459 0.0617 0.0875 0.0942 
1750 0.0567 0.0567 0.0610 0.0767 0.1060 0.1130 
2000 0.0734 0.0734 0.0782 0.0942 0.1270 0.1360 
2300 0.0966 0.0966 0.1020 0.1160 0.1550 0.1670 
2500 0.1160 0.1160 0.1230 0.1390 0.1790 0.1940 
2800 0.1540 0.1540 0.1620 0.1800 0.2220 0.2420 
3000 0.1900 0.1900 0.1960 0.2190 0.2620 0.2900 

T, CP 
OF Btu/lb-OF 

-250 0.070 
-150 0.105 

0 0.150 
250 0.210 
500 0.252 
750 0.275 

1000 0.288 
1250 0.296 
1700 0.302 
1750 0.303 
2300 0.303 
3000 0.303 



THERMAL PROPEFUIES OF FELT REUSABLE SURFACE INSULATION 
(7 = 5.4 lb/ft3) 

k, Btu/ft-hr-"F 
T, p ,  lb/ft2 
OF 0 0.021 0.212 2.116 21.16 211.6 2116.0 

0 0.0080 0.0080 0.0105 0.0140 0.0171 0.0198 0.0206 
100 0.0086 0.0086 0.0120 0.0166 0.0205 0.0238 0.0250 
200 0.0095 0.0095 0.0138 0.0194 0.0240 0.0275 0.0290 
300 0.0102 0.0102 0.0155 0.0222 0.0275 0.0322 0.0335 
400 0.0110 0.0110 0.0170 0.0250 0.0316 0.0370 0.0382 
600 0.0130 0.0130 0.0207 0.0315 0.0407 0.0475 0.0489 
800 0.0150 0.0150 0.0250 0.0380 0.0500 0.0608 0.0620 

10o0 0.0175 0.0175 0.0300 0.0462 0.0615 0.0775 0.0795 

-250 0.0065 0.0065 0.0070 0.0080 0.0092 0.0102 0.0110 

T, CP 9 

O F  Btu/lb-"F 
-250 0.300 
0 0.312 
200 0.320 
400 0.335 
600 0.345 
800 0.360 

lo00 0.380 

. 
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THERMAL PROPERTIES OF STRAIN ISOLATION PAD 
(7 = 5.4 w f t 3 )  

k, Btu/ft-hr-"F 
T, p ,  Ib/fg 
O F  0 0.2116 2.116 21.16 211.6 2116.0 
-250 
0 
100 
200 
300 
400 
600 
800 
lo00 

0.0048 
0.0053 
0.0057 
0.0063 
0.0073 
0.009 1 
0.0120 
0.0156 
0.0205 

0.W8 
0.0053 
0.0057 
0.0063 
0.0073 
0.009 1 
0.0120 
0.0156 
0.0205 

0.0080 
0.0110 
0.0124 
0.0135 
0.0152 
0.0168 
0.0205 
0.0250 
0.03 10 

0.0098 
0.0178 
0.0208 
0.0240 
0.0272 
0.0303 
0.0390 
0.0500 
0.0620 

T, CFJ, 
OF Btu/lb-OF 

0 0.190 
100 0.258 
200 0.344 
300 0.450 
400 0.575 

-100 0.140 

0.0103 
0.0198 
0.0235 
0.0273 
0.03 18 
0.0371 
0.0480 
0.0608 
0.0730 

0.0107 
0.0205 
0.0244 
0.0285 
0.0330 
0.0382 
0.0493 
0.0620 
0.0750 



THERMAL PROPERTIES OF 

SURFACE INSULATION/ 

SURFACE INSULATION 
SURFACE COATING 
(7 = 104 lb/fi3) 

HIGH-TEMPERATURE REUSABLE 

LOW-TEMPERATURE REUSABLE 

T, 
OF 

-250 
- 150 
0 
250 
500 
750 

1000 
1250 
1500 
1700 
1750 
1950 
2000 
2100 
2150 
2300 
2500 
2800 
3000 

k, 
B tu/ft-hr-' F 

0.425 
0.450 
0.487 
0.550 
0.604 
0.654 
0.704 
0.750 
0.796 
0.829 
0.837 
0.87 1 
0.883 
0.896 
0.904 
0.933 
0.975 
1.080 
1.180 

CP 9 

Btu/lb-'F 
0.150 
0.170 
0.190 
0.215 
0.240 
0.260 
0.285 
0.300 
0.315 
0.325 
0.330 
0.340 
0.345 
0.350 
0.353 
0.360 
0.375 
0.390 
0.390 

THERMAL PROPERTIES OF 
GRAF'HITEEPOXY COMPOSITE 

(7 = 98.4 lb/ft3) 

k, Btdft-hr-OF 
Tape and fabric 

T, reinforcement T, CP, 
OF Parallel Normal OF Btu/lb-OF 

-290 0.58 0.15 -300 0.049 
-150 1.19 0.23 -100 0.132 
-50 1.51 0.28 100 0.208 
100 1.96 0.36 300 0.277 
200 2.14 0.39 
3000 2.29 0.43 

'Extrapolated. 
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RADIATION PROPERTIES 

Region € r 
Windward TPS surface 0.85 0.15 
Leeward TPS surface 0.80 0.20 
Aluminum surface 0.667 0.333 
Space 1.0 0.0 
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TABLE 1. AMBIENT AIR 
TEMPERATURES (LISTED FOR 

FREE CONVECTION EXCHANGE 
TEMPERATURES) 

Time, sec Convection exchange 
temperature T, O F  

1700 -3.77 
1750 28.82 
1800 57.93 
1820" 57.93 
1900 57.93 
2000 57.93 
2400 57.93 
3000 57.93 

"Touchdown. 
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TABLE 2. HEAT TRANSFER COEFFICIENTS CALCULATED 
FOR INTERNAL FREE CONVECTION INSIDE FS877 

Convective 
surface JLOC, 

ID TC4 
1 24 

VO9T9525 

2 108 
vO9T9506 

3 132 
V09T9707 

4 192 
v09T9206 

lime, 

1700 
1800 
1900 
2000 
2400 
3000 
1700 
1800 
1900 
2000 
2400 
3000 
1700 
1800 
1900 
2000 
2400 
3000 
1700 
1800 
1900 
2000 
2400 
3000 

sec 

Btu x in? -sw-OF h, 

1.80 
2.30 
2.30 
2.20 
2.10 
1.90 
1.90 
2.40 
2.40 
2.30 
2.00 
1.70 
1.70 
2.00 
2.00 
2.00 
1.80 
1.60 
1.48 
1.60 
1.62 
1.60 
1.78 
1.78 
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TABLE 2. Concluded. 

Convcc tivc 
Btu 10-6 

h' in? -sec-OF surface JLOC, Timc, 
ID TCQ SCC 

5 300 1700 0.85 
V09T9157 1800 0.72 

1900 0.72 
2000 0.72 
2400 0.72 
3000 0.72 

6 372 1700 1.10 
V09T9377 1800 1.20 

1900 1.10 
2000 1 .OO 
2400 0.80 
3000 0.40 

7 384 1700 0.90 
VO9T9501 1800 0.00 

1900 0.00 
2000 0.00 
2400 0.00 
3000 0.00 

8 312 1700 0.81 
V09T9708 1800 0.41 

1900 0.41 
2000 0.41 
2400 0.41 
3000 0.88 

9 530 1700 0.81 
V09T9709 1800 0.41 

1900 0.41 
2000 0.41 
2400 0.41 
3000 0.88 

'JLOC =joint location (or node), TC = thermocouple. 
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TABLE 3. HEAT TRANSFER COEFFICIENTS 
CALCULATED FOR INTERNAL FREE 

CONVECTION INSIDE WS240 
~~ 

Surface lime. 
*tu x 10-6 

in.' -sec-'F 
1 1700 1.41 

ID sec h, 

1800 
1900 
2000 
2200 
2400 
3000 

2 1 700 
1800 
1900 
2000 
2200 
2400 
3000 

3 1 700 
1800 
1900 
2000 
2200 
2400 
3ooo 

4 1700 
1800 
1900 
2000 
2200 
2400 
3000 

1.64 
1.77 
1.85 
1.93 
1.93 
1.78 
0.46 
1.10 
1.12 
1.11 
1.04 
0.97 
0.63 
0.76 
0.76 
0.70 
0.49 
0.46 
0.63 
0.63 
0.32 
0.35 
0.33 
0.3 1 
0.30 
0.30 
0.30 

i 

16 



TABLE 3. Continued. 

Surface Time, 

h' in.2 -sec-OF ID SeC 

5 1700 1.43 

Btu 10-6 

1800 
1900 
2000 
2200 
2400 
3000 

6 1700 
1800 
1900 
2000 
2200 
2400 
3000 

7 1700 
1800 
1900 
2000 
2200 
2400 
3000 

8 1700 
1800 
1900 
2000 
2200 
2400 
3000 

9 1700 
1800 
1900 
2000 
2200 
2400 
3000 

1.68 
1.79 
1.85 
1.85 
1.83 
1.61 
0.74 
0.86 
0.77 
0.64 
0.32 
0.57 
0.70 
0.32 
0.19 
0.19 
0.19 
0.22 
0.26 
0.29 
1.44 
1.69 
1.79 
1.81 
1.80 
1.74 
1.59 
0.74 
0.81 
0.70 
0.53 
0.32 
0.25 
0.29 
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TABLE 3. Concluded. 

Surface ‘lime, 
Btu 10-6 sec h, i n 2  -sec-OF ID 

10 1700 0.30 

11 

12 

13 

1800 
1900 
2000 
2200 
2400 
3000 
1700 
1800 
1900 
2000 
2200 
2400 
3000 
1700 
1800 
1900 
2000 
2200 
2400 
3000 
1700 
1800 
1900 
2000 
2200 
2400 

0.30 
0.27 
0.22 
0.22 
0.22 
0.22 
1.49 
1.88 
1.93 
1.93 
1.90 
1.96 
1.61 
0.73 
0.98 
0.93 
0.85 
0.69 
0.50 
0.58 
0.30 
0.24 
0.22 
0.22 
0.22 
0.22 

3000 0.22 

. 
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Figurc 1 .  Locations of space shuttlc orbiter structures analyzed. 
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Figure 3. Thermal model setup for FS877. No convection elements (KO and others, 1986). 
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Figure 4. Thermal model setup for WS240. No convection elements (KO and others, 1986). 
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Figure 6. 
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Surface heating rates for WS240 calculated from STS-5 flight trajectory (KO and others, 1987). 
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Figurc 7. Time histories of thermal protcction systcm surface temperatures of FS877, STS-5 flight (KO and others, 
1986). 
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Figure 9. Time histories of structural temperatures of FS877. Internal convection neglected, STSJ flight (KO and 
others, 1986). 
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8429 

Figure 11. A total of 96 C21 elements added to the existing thermal model FS877 shown in figure 3 for modeling 
internal free convection. Small numerals indicate regions for different h. 
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Figure 12. 
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A total of 88 C41 elements attached to bay cavities of WS240 to model internal free convection. 
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Fiprc 13. Thermocouple locations on FS877. Small numerals indicate joint location (or node) numbers (KO and 
othcrs, 1986). 
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