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SUMMARY

A structural performance and resizing (SPAR) finite-element thermal
analysis computer program was used in the heat-transfer analysis of the
space shuttle orbiter subjected to reentry aerodynamic heating. Three
wing cross sections and one midfuselage cross section were selected for the
thermal analysis. The predicted thermal protection system surface tempera-
tures were found to agree well with flight-measured temperatures. The
calculated aluminum structural temperatures also agreed reasonably well
with the flight data from reentry to touchdown. The effects of internal
radiation and internal convection were found to be significant. The SPAR
finite-element solutions agreed reasonably well with those obtained from
the conventional finite-difference method.

INTRODUCTION

The space shuttle orbiter
reenters the earth atmosphere at an
altitude of approximately 121,920 m
(400,000 ft) and at extremely high
velocity (nearly Mach 25). To protect
the shuttle structure from severe
reentry aerodynamic heating, the entire
shuttle structure is covered with a
thermal protection system (TPS). The
regions of the shuttle surfaces that
are subjected to lower heating rates--
such as upper wing surfaces, fuselage
sidewalls, and bay doors--are covered
with highly flexible felt reusable
surface insulation (FRSI). The regions
exposed to higher heating rates--such
as wing and fuselage lower surfaces--
are covered with TPS tiles. A layer of
highly flexible strain isolation pad
(SIP) is sandwiched between the TPS
tiles and the aluminum skin to absorb
the strain incompatibility between the

brittle tiles and the skin. Overheat-
ing of the aluminum structure may cause
thermal creep (which, in turn, could
result in the loss of structural integ-
rity that is required for subsequent
flights). To some extent, the SIP
layer may absorb the thermal buckling
effect of the aluminum skin on the TPS
tiles. However, excessive thermal
buckling of the aluminum skin from
overheating could cause a debonding of
the TPS tiles. This, in turn, may
result in partial or total loss of
protection by the TPS.

In previous space transportation
system (STS) shuttle flights, TPS per-
formance was excellent. Hence, the
shuttle structural temperatures during
reentry were Kept well below the design
limit temperature of 176°C (350°F), and
the aforementioned concerns were prac-
tically nonexistent. However, each
shuttle is to be flown as many as 100
times. Therefore, an understanding of



mechanical performance, such as struc-
tural stress levels, under the reentry
aerodynamic and thermal loadings is
essential to establish shuttle struc-
tural integrity.

The flight load data obtained from
onboard strain gauge measurements con-
tain both the mechanical and the ther-
mal components. Unfortunately, these
two components cannot be practically
separated experimentally. To obtain
mechanical stresses, thermal stresses
must be subtracted from the strain-
gauge-measured stresses. This can be
done analytically by first calculating
the thermal stresses and then subtract-
ing them from the strain-gauge-measured
stresses to give the true mechanical
stresses. To calculate thermal
stresses, the structural temperature
distribution must be known. The number
of onboard thermocouples is insuffi-
cient to record accurately the struc-
tural temperature distribution. (Refer
to the appendix.) Therefore, heat-
transfer analysis must be performed to
calculate accurate structural tempera-
ture distribution. The temperature
distribution data thus obtained can be
used as input to a structural model for
thermal stress calculations.

Preliminary heat-transfer analyses
of typical wing cross sections and a
fuselage cross section were reported in
references 1 t- 3. The purpose of this
report is to extend the previous work
and perform finite-element heat-
transfer analyses of three shuttle
orbiter wing segments (WS) and one
fuselage cross section (FS). The
results will be compared with the STS-5
data, the most complete set of STS
flight data obtained thus far. The
work presented in this report can then
be extended to a thermal analysis of
the entire wing and fuselage.
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NOMENCLATURE

surface area of radiation
exchange element 1

capacitance matrix

radiation view factor, the
fraction of radiant heat
leaving radiation ele-
ment i incident on radi-

ation element j

factor for adjusting inte-
gration time step

felt reusable surface
insulation

fuselage cross section

high-temperature reusable
surface insulation

joint location or node
conduction matrix
radiation matrix

low-temperature reusable
surface insulation

source heating load vector
radiation load vector

time interval for radiation
load vector computations

room-temperature vulcanized
strain isolation pad

structural performance and
resizing



SRU unit of measurement of com-
puter usage; the number of
SRUs indicates the central
processor time, memory,
and input-output

activities
STS space transportation system
T absolute temperature
THEOSKN NASA theoretical thin-skin
computer program
TPS thermal protection system
t time, sec
WS wing segment or wing station
X,Y,z rectangular coordinate
system
X dimension along X axis, m
(in.)
Yy station on Y axis, m (in.)
. af ]
(] ST
2
3 [ ]
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at
3
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DESCRIPTION OF PROBLEM

Figure 1 shows three wing seg-
ments, WS240, WS328, and WS134, and one
midfuselage cross section, FS877,
selected for the heat-transfer analy-
ses. Wing segment WS240 is bounded by
WS240 and WS254; WS328 is bounded by
WS328 and WS342.5 (fig. 1). Wing

segment WS134 includes a segment
bounded by wing stations WS134 and
WS147, part of the wheel well bounded
by WS134 and WS160, and the glove area
up to FS807 (fig. 1). The leading edge
portion of the wing and the elevon were
not included in the analysis.

The reentry trajectory for the
space shuttle is shown in figure 2.
The time is counted from the beginning
of reentry, which occurs at an altitude
of 121,920 m (400,000 ft). The nominal
(or design) trajectories are indicated
by solid curves, and measured data
points are those obtained from the
STS-5 flight. The trajectories for
STS-1 through STS-4 are similar to the
STS-5 flight trajectory. The calcula-
tion of reentry aerodynamic heatings is
based on the actual STS-5 flight tra-
jectory. The STS-5 flight was chosen
because it provided the most complete
set of flight data, as compared with
other STS flights for which some data
were lost.

DESCRIPTION OF STRUCTURES

Wing Segment WS240

The geometry of wing segment
WS240, bounded by wing stations WS240
and WS254, is shown in figure 3. The
upper and lower skins of bay 1 and the
forward spar web of bay 1 are made of
aluminum honeycomb-core sandwich
panels. The upper and lower skins of
bays 2 to 4 are made of hat-stringer-
reinforced aluminum skins. The spar
webs, except for the bay 1 forward spar
web, are made of corrugated aluminum
plates. The entire lower wing skin is
covered with high-temperature reusable
surface insulation (HRSI) tiles, with a
SIP underlayer to absorb the strain



incompatibility between the skin and
HRSI. Most of the upper skin of bay 1
is protected by low-temperature reus-
able surface insulation (LRSI) tiles,
which overlay the SIP layer. A small
portion of the upper skin of bay 1 and
the upper skins of bays 2 to U are
covered with highly flexible FRSI that
has no SIP underlayer.

Wing Segment WS328

Wing segment WS328, bounded by
wing stations WS328 and WS342.5
(fig. 4), has only three bays. The
forward spar web of bay 1 is made of
aluminum honeycomb-core sandwich
panels; the remainder of the spar webs
are corrugated aluminum plates. All
the lower and upper aluminum skins are
hat-stringer reinforced. The lower
skin is protected with HRSI, and the
upper skin with LRSI. No FRSI appears
on the upper surface of WS328.

Wing Segment WS134

The geometry of wing segment WS134
is shown in figure 5. The lower and
upper skins of bays 2 to 4, as well as
those of the glove area, are made of
hat-stringer-reinforced aluminum
panels. The leading edge region of the
glove and the upper skin of the wheel
well (bay 1) are made of aluminum
honeycomb-core sandwich structures,

All the spar webs and the wheel well
vertical walls are made of corrugated
aluminum skins. The landing gear door
is made of aluminum stringer-core-
reinforced sandwich structure. The
entire lower surface and the glove
leading edge region of WS134 are cov-
ered with HRSI; most of the upper sur-
face of WS134 is covered with FRSI,
with small regions covered with HRSI
and LRSI.

Fuselage Cross Section FS877

Fuselage cross section FS877 is
shown in figure 6. The bottom and the
sidewalls of the fuselage are made of
T-stiffener-reinforced aluminum
skins. The lower and upper glove
skins (except for the leading edge
region) are made of hat-stringer-
reinforced aluminum skins. The leading
edge region of the glove skin is made
of aluminum honeycomb-core sandwich
structures. The bay door is a sandwich
structure made of Nomex (E.I. du Pont
de Nemours & Co.) honeycomb-core and
graphite-epoxy skins. A small portion
of the bay door inner surface is
covered with a layer of room-
temperature vulcanized (RTV) rubber to
serve as a heat sink. The fuselage
bottom, lower glove, glove leading edge
region, and part of the glove upper
surface (near the leading edge region)
are covered with HRSI. Most of the
upper glove outer surface is covered
with LRSI. The lower portion of the
sidewall outer surface is covered with
FRSI, and the upper portion with LRSI.
The outer surface of the payload bay
door is covered with a layer of FRSI.

THERMAL MODELING

Structural Simplifications

Because of the complex structure
of the shuttle, some structural simpli-
fications were necessary before the
thermal models were set up, so that
the analyses would be manageable with
existing computers. Excessively
detailed models could lead to tedious
radiation view-factor computations, and
the gain in the solution accuracies
might be small in comparison to the
solution obtained from simpler, yet
reasonably detailed, models. To
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examine the adequacy of representing
the hat-stringer- and T-stiffener-
reinforced skins with smooth skins of
uniform equivalent thicknesses, the
conventional finite-difference method
was used in the two-dimensional heat-
transfer analyses of a single hat
stringer and a single T-stiffener. As
shown in figure 7, the hat stringer
that was analyzed was located on the
lower skin of WS2UO bay 3. The upper
skin, the spar webs, and the lower skin
(excluding the hat stringer) were
assumed to have uniform effective
thicknesses.

In the analyses, all types of
radiation heat exchanges were con-
sidered: (1) external radiation
from the TPS surface into space,

(2) radiation exchanges between the
hat-stringer outer surface and the
inner surfaces of the bay, and

(3) internal radiation inside the hat
stringer. The heat input was based on
Rockwell mission 3 heatings. The
results shown in figure 8 give the peak
temperature difference between points A
and B on WS240 to be approximately
14.44°C (26°F). The temperature curves
for the case of no internal radiation
within the hat stringer almost coin-
cided with the corresponding tempera-
ture curves for which the hat-stringer
internal radiation was considered.

This suggests that the effect of the
hat-stringer internal radiation is
negligible.

The T-stiffener that was analyzed
was located at the bottom of FS877, as
shown in the inset of figure 9. In
this case, only the external radiation
from the TPS surface into space was
considered, and the internal radiation
from the T-stiffener into the fuselage
inner wall was neglected. The tempera-
tures at points A, B, and C of the

T-stiffener (fig. 9) differ only
slightly. The temperature differences
between points A and B of the hat-
stringer and the T-stiffener are
negligible. Therefore, in the finite-
element thermal modeling, the hat-
stringer- and T-stiffener-reinforced
skins, the corrugated spar webs, and
the honeycomb-core sandwich skins and
spar webs are represented by smooth
solid skins with effective thicknesses.

Finite-Element Models

Several finite-element models were
set up for the SPAR (ref. 4) finite-
element heat-transfer analyses of the
shuttle. Wing segment WS2U0 was the
most extensively analyzed because most
of the instrumentation for gathering
structural temperature data existed at
station WS240. WS240 was modeled in
one, two, and three dimensions. Both
WS328 and WS13U4 were modeled in three
dimensions only; fuselage cross section
FS877 was modeled in two dimensions.
The structural models for thermal
stress calculations do not include the
secondary load-carrying structures--the
elevon and leading edge region of the
wing. Hence, in all thermal modelings
for the entire wing cross sections,
these secondary load-carrying regions
were neglected.

Because of the presence of gaps
between the TPS tiles (HRSI and LRSI),
the heat flow through the TPS tiles was
restricted only in the thickness direc-
tion of the tiles for all thermal
models described below. In the analy-
ses, two TPS thicknesses (80 and
100 percent) were used for both the
HRSI and the LRSI tiles. The purpose
of using the effective thickness of
80 percent of the original TPS thick-
ness was to account for the gap



heatings between the TPS tiles. The
effect of internal natural convective
heat transfer was neglected. (At
present, the capability of handling
two-dimensional free convection is
being introduced to the SPAR program.)
The effect of the external forced con-
vective coolings (negative heatings) on
the structural temperatures near the
end of the flight was found to be neg-
ligible and therefore was neglected for
all thermal models except WS240 three-
dimensional and WS328 three-dimensional
models. The thermal properties for
input to the SPAR thermal models were
obtained from the manufacturers. The
temperature and pressure (or time)
dependencies of the TPS thermal
properties are as follows: reusable
surface insulation (RSI) coating--a
function of temperature only; RTV--a
constant; and HRSI, LRSI, FRSI, and
SIP--functions of both temperature and
pressure (or time).

One-dimensional wing model- The
one-dimensional thermal model set up
for WS240 bay 3 is shown in fig-
ure 10. This model was used to examine
the variation of solutions obtained by
modeling the HRSI in 5, 10, and 15 lay-
ers. All the aluminum skins, as well
as HRSI, FRSI, SIP, and RTV, were
modeled with K41 (four-node heat-
conduction) elements. The aerodynamic
surfaces were modeled with K21 (two-
node heat-conduction) elements of unit
cross section for source heat genera-
tion. The internal and external radia-
tion effects were modeled by attaching
R21 (two-node radiation) elements at
the radiation surfaces of the aluminum
skins and the TPS. The vertical sides
of all K41 elements were insulated.

The radiation into space was modeled
with only one R21 element that was kept
at a constant temperature of 26.67°C
(80°F). As discussed later, division

of the lower TPS into 10 or more sub-
layers gave sufficiently accurate
solutions. Therefore, in setting up
all other thermal models, the lower TPS
was modeled in 10 or more sublayers,
and the upper TPS in 3 to 5 sub-
layers. The one-dimensional model was
also used to compare the SPAR finite-
element solution with that obtained
from the conventional finite-difference
method.

Two-dimensional wing models- Two-
dimensional SPAR thermal models were
set up for two cases: the two-
dimensional one-cell model for WS2U0
bay 3 (fig. 11), and the two-
dimensional model for the entire WS240
load-carrying cross section excluding
the leading edge region and the elevon
(fig. 12). The two-dimensional one-
cell model was used to study the
effects of the existence of spar webs
and chordwise heat flows (within bay 3)
through the aluminum skins. The two-
dimensional model was used to examine
the effect of the other bays. The
aluminum skins and spar webs were mod-
eled with K21 elements rather than K41
elements, as in the case of the one-
dimensional model. However, the HRSI,
SI1P, RTV, and FRSI were modeled with
K41 elements. The K21 elements of unit
cross section were used to model the
aerodynamic surfaces for source heat
generation. The radiation surfaces and
the radiation into space were modeled
with R21 elements. The front and rear
portions of the models were insulated.
The two-dimensional one-cell model has
123 joint locations (JLOCs) or nodes,
and the WS240 two-dimensional model has
383 JLOCs.

Three-dimensional wing models-
The three-dimensional models are capa-
ble of handling the effects of chord-
Wwise and spanwise heat flows and the




effect of the existence of rib trusses.
Two types of SPAR three-dimensional
models were set up for WS240: the
three-dimensional one-cell model with
268 JLOCs (fig. 13) and the three-
dimensional wing segment model with

920 JLOCs (fig. 14). The wing skins,
spar webs, rib-cap shear webs, RTV
layers (on both sides of SIP), and TPS
surface coatings were modeled with K41
elements. The spar caps, rib caps, and
rib trusses were modeled with K21
elements. The TPS was modeled in

10 sublayers on the lower surface, and
3 to 4 sublayers on the upper surface
using K81 (eight-node three-dimensional
heat-conduction) elements and K61 (six-
node three-dimensional heat-conduction)
elements. The K61 elements were used
only in the region where the modeled
TPS sublayers changed from four to
three sublayers on the upper surface of
WS240 bay 1 (fig. 14). The SIP was
modeled with only one layer of K81
elements. The aerodynamic surfaces
were modeled using one layer of KA1
elements of unit thickness to provide
source heat generation. The external
and internal radiations were modeled by
attaching a layer of R41 (four-node
radiation) elements to the radiation
surfaces. The radiation into space was
modeled by one R41 element. No radia-
tion elements were attached to the sur-
faces of the rib-cap shear webs and the
rib trusses, because the exposed areas
were small. The front and rear por-
tions of the two SPAR three-dimensional
models were totally insulated. The
three-dimensional one-cell model was
also used to study the effect of inter-
nal radiations.

SPAR modeling of WS328 was similar
to that of the WS240 three-dimensional
model. The lower TPS (HRSI) was mod-
eled in 13 sublayers, and the upper
TPS (LRSI) in 5 sublayers. The WS328

three-dimensional model shown in fig-
ure 15 had a total of 916 JLOCs.

The three-dimensional SPAR thermal
model set up for WS134 is shown in
figure 16. The HRSI was modeled in
13 sublayers, and the LRSI in 3 sub-
layers. The landing gear was modeled
with one K81 element to represent the
large mass of the landing gear sys-
tem. The remainder of the WS134
modeling is similar to that of the
WS240 three-dimensional model. The
WS134 three-dimensional model had
2075 JLOCs.

Two-dimensional fuselage model-
The SPAR model for FS877 was two dimen-
sional (fig. 17) and had 605 JLOCs.
Because of symmetry, only half of the
fuselage cross section was modeled.
The T-stiffener- and hat-stringer-
reinforced skins were represented as
smooth skins of effective thick-
nesses. The effective skins, glove
honeycomb-core sandwich skins, bay door
composite skins, longerons, vertical
wall between the two longerons, torque
box, and top centerline beam were
modeled with K21 elements. The glove
aluminum honeycomb core was modeled
with K41 elements having effective
thermal properties. The bay door of
Nomex honeycomb core was modeled by
using both K41 and K31 (three-node
heat-conduction) elements having effec-
tive conduction properties. The TPS
everywhere was modeled in 10 sublayers
with K41 elements.

AERODYNAMIC HEATING

The external heat inputs to the
thermal models were computed by a NASA
theoretical thin-skin computer program
called THEOSKN, using the velocity,
altitude, and angle-of-attack time
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histories of the flight-measured STS-5
shuttle trajectory given in figure 2.
The THEOSKN computer program solves the
one-dimensional thin-skin heating equa-
tion and computes time histories of
surface temperatures, heating rates,
heat-transfer coefficients, and skin
friction. The thermodynamic and trans-
port properties of air used in this
analysis are given in reference 5.

Representative heating rates for
WS240, WS328, and WS134 are given in
figures 18, 19, and 20, respectively.
The heating rates for the lower sur-
faces were computed assuming laminar
flow up to 1160 sec and turbulent flow
from 1160 sec until the end of the
flight. The laminar heat transfer was
computed by relating heat transfer to a
skin friction equation through a modi-
fied Reynolds analogy. In this analy-
sis, the Blasius incompressible skin
friction equation (ref. 6) was related
to heat transfer by the Prandtl number
to the -0.6 power. Compressibility
effects were accounted for by using the
Eckert reference enthalpy transforma-
tion (ref. 7). Details of this method
for calculating heat transfer at hyper-
sonic speeds are given in refer-
ence 8. The turbulent heat transfer
was computed by a similar procedure
except that the Van Driest transforma-
tion (refs. 9 and 10) was used to
account for compressibility and the
Reynolds analogy factor was assumed to
be a constant value of 1.1.

The boundary-layer flow on the
upper surface of bay 1 for both WS328
and WS2U40 was assumed to be attached.
The remainder of the upper wing surface
was assumed to be in a region of sepa-
rated flow. The heat transfer for the
attached flow areas was computed using
the same heat-transfer codes used to
calculate the lower surface heating.

To calculate the heating rates for the
separated flow areas on the upper
surface, the heat-transfer codes were
empirically modified. The empirical
corrections were determined from
comparisons with previously measured
flight data.

Heating rates calculated for FS877
are shown in figure 21 for six typical
locations. The transition from laminar
to turbulent heating occurred at time
t equal to 1100 sec. The laminar heat
transfer for the lower fuselage and
leading edge of the glove were calcu-
lated using the infinite swept-cylinder
theory, together with the heat-transfer
theories of Fay and Riddell (ref. 11)
and Lees (ref. 12). The heat transfer
on the lower glove was increased by
20 percent, as suggested by wind-tunnel
test results. The turbulent heat-
transfer coefficients were computed by
the method given in reference 13. The
heating rates for the upper fuselage
were calculated using empirical rela-
tionships derived from comparisons
between calculated surface temperatures
and measured data obtained from previ-
ous shuttle flights.

RADIATION EXCHANGE

For both external and internal
thermal radiation exchanges, all the
view factors that were calculated obey
the following equation (ref. 14):

AiFij = AjFJi (1)
where Ai is the surface area of radi-
ation exchange element i and F,, is
the radiation view factor, defined as
the fraction of radiant heat leaving
element i incident on element j.

In calculating view factors for the




external radiation exchanges where
element 1 represents the space ele-
ment and element j any radiation
exchange element on the wing or fuse-
lage surface, F;; was assumed to be
unity. Therefore, according to equa-

tion (1), FJi = Ai/Aj.

In the view-factor calculations
for fuselage internal radiation
exchanges, each radiation exchange
element was set to receive radiation
not only from the other elements but
also from mirror images of all ele-
ments. In other words, the entire
fuselage cross section was used to
compute the fuselage internal radiation
view factors. Values of emissivity and
reflectivity used to compute radiant
heat fluxes are as follows:

Surface Emissivity Reflectivity
Windward 0.850 0.150
Leeward 0.800 0.200
Internal

structure 0.667 0.333
Space 1.000 0

The initial temperature distribution
used in the analysis was obtained from
actual flight data. In thermal model-
ing, most of the time was consumed in
computing the view factors.

TRANSIENT THERMAL SOLUTIONS

The SPAR thermal analysis finite-
element computer program was used in
the calculation of temperature-time
histories at all joint locations of the
thermal models. The SPAR program used
the following approach to obtain tran-
sient thermal solutions.

The transient heat-transfer matrix
equation that was used is of the form

(Kk+Kr)T+CT=Q+R (2)

where

C capacitance matrix

Kk conduction matrix

Ky radi;tion matrix

Q source heating load vector
R radiation load vector

T absolute temperature

: al ]
[ ] it

Equation (2) was integrated by assuming
that the temperature vector T, 4 at
time step t;, 4 can be expressed in
Taylor series as

. 1 - 2
Ti+1 = Ti + Ti At + 51 Ti At

1 e
L3 1y at3 4 L L. (3)

where T; 1is the temperature vector at
time step t; and At @s the time
increment. The vector T. 1is obtained
directly from equation (2):



Ti o -C-1(Kk + Kr)Ti + C'1(Q + R) (&)

Higher order derivatives are obtained
by differentiating equation (2) accord-
ing to the assumption that material
properties and R are constant over
At and that Q varies linearly with
time. Hence,

T, -C-1(K + UK )T, + C-‘Q (5)
i k r'i

-1 . . .

Ti -C (Kk + MKr_)Ti + uKrTi (6)
The SPAR program automatically

calculates the integration time step

At internally. However, if the solu-

tion does not converge, At can be

adjusted by using reset command FDT.

In the present computations, the
Taylor series expansion given in equa-
tion (3) was cut off after the third
term. The pressure dependency of the
TPS and SIP thermal properties was
converted into time dependency based on
the trajectory given in figure 2.

Time-dependent properties were
averaged over RESET TIME (or time
intervals), which was taken to be 2 or
25 sec. Temperature-dependent proper-
ties were evaluated at the temperatures
computed at the beginning of each time
interval. The values of Q, Q, and R
were computed every 2 sec.

RESULTS

TPS Sublayers

Figure 22 shows the lower aluminum
skin temperatures predicted from the
WS240 one-dimensional model (fig. 10)
for which the HRSI (lower TPS) was
modeled in 5, 10, and 15 sublayers.

10

Mission 3 heating data were used in
this study. The temperature curves for
5, 10, and 15 TPS sublayers are very
close, with a maximum temperature dif-
ference of only 1.67°C (3.01°F). In
figure 23, peak skin temperatures for
the three cases are plotted against the
number of TPS sublayers. HRSI modeling
of more than 10 sublayers is seen to
give sufficiently accurate temperature
solutions. The time histories of the
temperature distributions (using
Rockwell-calculated surface heating)
within the HRSI of the WS240 three-
dimensional model are shown in fig-

ure 24. The maximum temperature dif-
ferences between the outer and inner
surfaces for the HRSI and the FRSI
occurred at 1000 sec and 500 sec,
respectively, from reentry.

Effect of Internal Radiation

The effect of the internal radia-
tion (radiation inside the bay) was
investigated using the WS240 three-
dimensional model (fig. 13) and assum-
ing total insulation on the outer sur-
faces of the spar webs. The results
shown in figure 25 are for mission 3
heatings. When the effect of internal
radiation was considered, the lower and
the upper skin temperatures were
brought closer together (especially
after landing), and the peak lower skin
temperature was reduced by approxi-
mately 39°C (70°F).

Comparison of Solutions

Figure 26 shows WS240 bay 3 alumi-
num skin temperatures calculated using
different thermal models for WS2UO0.
Mission 3 heatings were used in the
temperature calculations. By intro-
ducing the effects of spar webs and




neighboring bays (that is, by extending
the one-dimensional model in fig. 10 to
the two-dimensional model in fig. 12),
the lower and upper skin peak tem-
peratures (predicted from the one-
dimensional model) were reduced by
approximately 8.89°C (16°F) and 17.78°C
(32°F), respectively. By extending the
two-dimensional model (fig. 12) to the
final three-dimensional wing segment
model in figure 14 (that is, by adding
the effect of rib trusses and the
effect of spanwise heat flows), the
lower and upper skin peak temperatures
were further decreased by 8.33°C (15°F)
and 12.22°C (22°F), respectively.

Thus, the total reductions of the lower
and upper skin peak temperatures were
17.22°C (31°F) and 30°C (5U4°F), respec-
tively, when extending the one-
dimensional model to the final three-
dimensional model for WS240. This
demonstrates that the three-dimensional
model gave more accurate solutions than
one- and two-dimensional models. In
figure 26, the temperature predicted
from the three-dimensional one-cell
model was slightly higher than that
predicted from the three-dimensional
wing segment model for WS240. This
could be due to the combined effects of
spanwise and chordwise heat flows and
the effect of the trusses.

TPS Surface Temperatures

In figures 27 to 30, the predicted
and the STS-5 flight-measured TPS sur-
face temperatures are compared for
WS240, WS328, WS134, and FS877. (Ther-
mocouple locations are shown in the
appendix, figures 43 to 46.) The data
are in good agreement, which indicates
that the calculations of the aerody-
namic heatings were satisfactory.

As expected, the lower TPS surface

temperatures of WS134 (inboard station)
are slightly lower than those of two
outboard stations (WS240 and WS328)
because flow distances from the stag-
nation point for WS134 are longer than
those for WS2U0 and WS328. In a narrow
time range of t = 1500 to 2000 sec
(immediately before and after touchdown
time), the flight data--especially for
the lower TPS surfaces--gave lower
temperatures than those calculated.
This discrepancy could have been caused
by insufficient forced convective cool-
ings in the heat input calculations and
the neglect of internal convection that
resulted primarily from cool air enter-
ing the shuttle. (Air enters the inte-
rior of the shuttle orbiter at 30,480-m
(100,000-ft) altitude, about 1400 sec
from reentry.)

Using forced convective cooling
near the touchdown time (negative heat-
ing) resulted in excess computation
time because of a change of sign in
heat input. However, the effect of
such negative heating on the structural
temperatures was almost inconspicuous
when plotted. Therefore, negative
heating was not included in the thermal
analyses of WS134 and FS877. The
flight data for the lower TPS surfaces
of WS240 bay 3 (fig. 27) and WS134
bay 1 (fig. 29) contain void data
because the lower limits of the thermo-
couple temperature readouts were set
too high. The measured temperatures
for the FS877 bottom TPS surface at
JLOC97 shifted slightly upward with
time.

Structural Temperatures

Figures 31 to 34 compare the STS-5
flight data with the computed aluminum
skin temperatures at typical points
on WS240, WS328, WS134, and FS877,
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respectively. The temperature cal-
culations were made using 80- and
100-percent TPS thicknesses. For the
WS240 (fig. 31), the measured lower
skin temperature data closely followed
the calculated temperature curves for
100-percent TPS thickness almost up to
touchdown time., After that, the flight
temperature data were consistently
lower. The marked discrepancies
between the calculated and measured
lower skin temperatures after touchdown
could have been caused by the effect of
internal convective cooling resulting
from outside air entering the wing
interior. The effect of internal free
convections was neglected because at
the time of the analysis the SPAR
program was not capable of calculating
free convective heat transfer. For the
upper skin of WS240, the measured and
calculated temperatures (based on
100-percent TPS thickness) compared
reasonably well even after touchdown.
The agreement was especially good for
the bay 1 upper skin.

For the lower skins for both WS328
and WS134 (figs. 32 and 33, respec-
tively), the flight data tended to fol-
low the predicted temperature curves
based on 80-percent TPS thickness dur-
ing reentry (up to 1600 sec). Then the
data deviated from the predicted tem-
perature curves. This indicates the
effects of gap heating during reentry
and the internal convective cooling
inside the wing, which began shortly
before touchdown. For the upper skins
of both WS328 and WS134, the effect of
gap heating was not observed. The data
correlated fairly well with the pre-
dicted temperature curves based on
100-percent TPS thickness.

In figure 34, the calculated
structural temperatures for FS877 are
compared with STS-5 flight-measured
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data. During reentry, the flight data
compared reasonably well with the
calculated temperatures based on
100-percent TPS thickness, except for
JLOC108. Again, the convection inside
the fuselage caused by the entering of
outside air resulted in lower measured
temperature values after t = 1700 sec.

Figures 35 to 37 show the chord-
Wwise distributions of aluminum skin
temperatures at WS240, WS328, and
WS134, respectively, for a reentry time
of t o 1600 sec. The scalloped shape
of the data curves reflects the temper-
ature drop at the heat sinks or spar
caps. The scalloped data points for
the skin temperatures are in direct
correlation to the degree of thermal
stress buildups in the structure. With
few exceptions, the STS-5 flight data
correlated reasonably well with the
predictions. The circumferential dis-
tribution of the FS877 structural tem-
peratures is shown in figure 38. The
"valleys" of the temperature profiles
indicate temperature drops at the heat
sinks or structural junction points.
The payload bay outer skin was heated
more than the sidewall, although the
heat input there was relatively low.
This indicates the poor heat conduction
in bay door materials.

Finite-Element Method Compared With
Finite-Difference Method

WS2U40 one-dimensional and two-
dimensional one-cell models were used
to compare the solutions obtained from
the SPAR finite-element method and the
conventional finite-difference method.
The finite-difference models were made
as close to the SPAR models as possi-
ble. As shown in figures 39 and 40,
the solutions obtained from the two
methods are similar. The SPAR




solutions tended to give slightly
higher temperatures at point & on the
lower skins for the two models studied.
For the upper skins, the SPAR one-
dimensional model (fig. 39) resulted
in slightly lower temperatures. The
temperatures at points B and C of the
SPAR two-dimensional one-cell model
(fig. 40) increased more rapidly than
those predicted by the finite-
difference method.

SPAR Solution Accuracy

A WS240 three-dimensional one-cell
model was used to study the accuracy of
the SPAR finite-element solutions. The
RESET TIME, or the time interval for
updating the time-dependent thermal
properties, was set at 2, 25, 50, and
100 sec. The factor for adjusting
integration time step (FDT) was 0.5,
and the time interval for radiation
load vector computations (RI) was
2.0 sec. The temperatures at point A
of the lower skin are plotted in
figure 41. The three solutions, each
based on a different RESET TIME, are
quite close. Figure 42 shows the plots
of computer SRU units compared with
SPAR RESET TIME. An SRU is defined as
a unit of measurement of computer
system usage. The number of SRUs
indicates the central processor time,
memory, and input-output activity. The
solid curve in figure 42 is for the
case in which the TPS was modeled with
K81 elements and the heat flow was
restricted in the TPS thickness direc-
tion. The dotted curve is for the case
in which the TPS was represented by K21
elements oriented in the TPS thickness
direction. By using K21 elements, the
SRUs were reduced by about 20 percent.
By increasing the RESET TIME from 2 sec
to 25 sec, the reduction in SRUs was
qQuite large (down 25 percent). A

further increase in RESET TIME showed
very little gain (reduction in SRU).
The solutions based on RESET TIME
values of 2 and 25 sec (fig. 41) are
graphically indistinguishable. Hence,
by using a RESET TIME of 25 sec, the
computer running cost can be greatly
reduced while achieving a sufficiently
accurate solution.

CONCLUSIONS

The finite-element computer pro-
gram for structural performance and
resizing (SPAR) was used in the reentry
heat-transfer analysis of three wing
segments and one midfuselage cross
section of the space shuttle orbiter.
The thermal models were set up in one,
two, and three dimensions. The thermal
analyses yielded the following results.

1. The predicted surface tempera-
tures for the thermal protection system
agreed favorably with the flight-
measured data. Therefore, the "refer-
ence enthalpy method" can be used to
predict reliable laminar heat-transfer
coefficients at hypersonic speeds.
Also, the Van Driest theory using a
Reynolds analogy factor of 1.1 can be
employed to predict reliable turbulent
heat transfer at hypersoniec and super-
sonic speeds. The measured tempera-
tures showed that transition from
laminar to turbulent flow over the
entire analyzed wing surfaces occurred
1160 sec after reentry.

2. The measured and predicted
structural temperatures correlated well
prior to touchdown. This implies that
the SPAR thermal models for both the
wing segments and the fuselage cross
section were adequate.
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3. The internal convection was
believed to have considerable effect
on the structural temperatures after
touchdown (especially for the fuselage)
and cannot be neglected.

4, The effect of the internal
radiation was found to be significant
and cannot be neglected even at rela-
tively low structural temperatures.

The view-factor computations for the
internal radiation were a major task in
thermal analysis. Therefore, introduc-
ing the capability of automatic view-
factor computations into the SPAR pro-
gram is highly recommended.

5. In SPAR thermal modeling of
the TPS for restricted one-dimensional
heat flow, using K21 (two-node heat-
conducting) elements was found to be
more efficient (less computation time)
than using K81 (eight-node) elements
with heat flow permitted only in one
direction. A RESET TIME (time interval
for updating the time-dependent thermal
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properties) of less than 25 sec did not
improve the solution accuracy signifi-

cantly but substantially increased the

computer time,

6. Solutions obtained from the
SPAR finite-element method and the
conventional finite-difference method
are in good agreement.

APPENDIX--THERMOCOUPLE LOCATIONS

Thermocouple locations for wing
segments WS240, WS328, and WS134 and
for fuselage cross section FS877 are
shown in figures 43 to U6.

Ames Research Center

Dryden Flight Research Facility

National Aeronautics and Space
Administration

Edwards, California, March 23, 1984
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Figure 1. Location of space shuttle wing segments and fuselage cross section

used in heat-transfer analysis.
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Figure 32, Time histories of structural temperatures for WS328 (STS~-5
flight).
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Figure 35. Chordwise distribution of aluminum skin tem-

peratures for WS240 (SsTS-5 flight, t = 1600 sec).
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Figure 36. Chordwise distribution of aluminum skin tem-
peratures for WS328 (STS-5 flight, t = 1600 sec).
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Figure 37. Chordwise distributions of aluminum skin temperatures for WS134 and
Ws1l47 (STS-5 flight, t = 1600 sec).
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Figure 38. Circumferential distribution of structural tem-
peratures for FS877 (STS-5 flight, t = 1600 sec).
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Figure 39. Comparison of WS240 bay 3 structural
temperatures predicted by SPAR finite-element and
finite-difference methods for one-dimensional model
(Rockwell mission 3 heating).
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Figure 40. Comparison of WS240 bay 3 structural temperatures predicted by SPAR
finite—element method and finite-difference method for two-dimensional one~-cell
model (Rockwell mission 3 heating).
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Figure 41. Aluminum lower skin temperatures for
WS240 bay 3, predicted from different values of
SPAR RESET TIME for three-dimensional one-—cell
model (Rockwell mission 3 heating).
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Figure 42. Computer SRU units for various values of
SPAR RESET TIME for WS240 bay 3 three-dimensional
one-cell model (Rockwell mission 3 heating).
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Figure 43. Thermocouple locations on WS240. (Smaller numerals indicate JLOC
numbers.)
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Figure 44. Thermocouple locations on WS328. (Smaller numerals indicate JLOC
numbers.)
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