4,062 research outputs found

    Location and Conformation of the LK alpha 14 Peptide in Water/Ethanol Mixtures

    Get PDF
    It is widely recognized that solvation is one of the major factors determining structure and functionality of proteins and long peptides, however it is a formidable challenge to address it both experimentally and computationally. For this reason, simple peptides are used to study fundamental aspects of solvation. It is well established that alcohols can change the peptide conformation and tuning of the alcohol content in solution can dramatically affect folding and, as a consequence, the function of the peptide. In this work, we focus on the leucine and lysine based LK alpha 14 peptide designed to adopt an alpha-helical conformation at an apolar-polar interface. We investigate LK alpha 14 peptide's bulk and interfacial behavior in water/ethanol mixtures combining a suite of experimental techniques (namely, circular dichroism and nuclear magnetic resonance spectroscopy for the bulk solution, surface pressure measurements and vibrational sum frequency generation spectroscopy for the air-solution interface) with molecular dynamics simulations. We observe that ethanol highly affects both the peptide location and conformation. At low ethanol content LK alpha 14 lacks a clear secondary structure in bulk and shows a clear preference to reside at the air-solution interface. When the ethanol content in solution increases, the peptide's interfacial affinity is markedly reduced and the peptide approaches a stable alpha-helical conformation in bulk facilitated by the amphiphilic nature of the ethanol molecules

    Optical absorption and photoluminescence spectroscopy of the growth of silver nanoparticles

    Full text link
    Results obtained from the optical absorption and photoluminescence (PL) spectroscopy experiments have shown the formation of excitons in the silver-exchanged glass samples. These findings are reported here for the first time. Further, we investigate the dramatic changes in the photoemission properties of the silver-exchanged glass samples as a function of postannealing temperature. Observed changes are thought to be due to the structural rearrangements of silver and oxygen bonding during the heat treatments of the glass matrix. In fact, photoelectron spectroscopy does reveal these chemical transformations of silver-exchanged soda glass samples caused by the thermal effects of annealing in a high vacuum atmosphere. An important correlation between temperature-induced changes of the PL intensity and thermal growth of the silver nanoparticles has been established in this Letter through precise spectroscopic studies.Comment: 15 pages,4 figures,PDF fil

    Uniaxial magnetic anisotropy tuned by nanoscale ripple formation: ion-sculpting of Co/Cu(001) thin films

    Get PDF
    We have investigated the growth of surface nanostructures on a Co/Cu(001) film and the growth of Co films on a nanostructured Cu(001) substrate as well as the effect of nanoscale pattern formation on the film magnetic properties. Here we demonstrate by scanning tunneling microscopy measurements and magneto-optic Kerr effect hysteresis curves that low-temperature grazing-incidence ion sputtering can be used to induce the formation of nanoscale ripples which reduce the four-fold symmetry of the Co film to two-fold, thus generating a strong in-plane uniaxial magnetic anisotropy. The nanostructures and the associated uniaxial magnetic anisotropy were found to be stable up to room temperature

    Study of the bacterial community affiliated to Hyalesthes obsoletus, the insect vector of “bois noir” phytoplasma of grape

    Get PDF
    Grape yellows caused by phytoplasmas afflict several important wine-producing areas of Europe. A grape yellows with increasingincidence in European vineyards is “bois noir” (BN), caused by ‘Candidatus Phytoplasma solani’. Its vector is the planthopperHyalesthes obsoletus Signoret (Hemiptera Cixiidae), occasionally feeding on grapevine. An innovative strategy for reducing thediffusion of the disease could be symbiotic control, exploiting the action of symbiotic microorganisms of the insect host. To investigatethe occurrence of possible microbial candidates for symbiotic control we performed a molecular characterization of thebacteria associated to H. obsoletus. Length heterogeneity PCR was applied for a preliminary population screening. Taxonomicaffiliations of the bacterial species were analyzed by denaturing gradient gel electrophoresis, showing, within the microbial diversity,the intracellular reproductive parasite Wolbachia pipientis and a Bacteroidetes symbiont with 92% nt identity with ‘CandidatusSulcia muelleri’. PCR essays specific for these bacteria showed they co-localize in several organs of H. obsoletus. Fluorescentin situ hybridization was performed to assess the distribution of these microorganisms within the insect body, showing interestinglocalization patterns, particularly in insect gonads and salivary glands. These results could be a starting point for a deeper investigationof functions and relationships between microbial species

    Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)

    Full text link
    The phase immiscibility and the excellent matching between Ag(001) and Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field of low dimensionality magnetic systems. Intermixing could be drastically limited at deposition temperatures as low as 140-150 K. The film structural evolution induced by post-growth annealing presents many interesting aspects involving activated atomic exchange processes and affecting magnetic properties. Previous experiments, of He and low energy ion scattering on films deposited at 150 K, indicated the formation of a segregated Ag layer upon annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag matrix. In those experiments, information on sub-surface layers was attained by techniques mainly sensitive to the topmost layer. Here, systematic PED measurements, providing chemical selectivity and structural information for a depth of several layers, have been accompanied with a few XRD rod scans, yielding a better sensitivity to the buried interface and to the film long range order. The results of this paper allow a comparison with recent models enlightening the dissolution paths of an ultra thin metal film into a different metal, when both subsurface migration of the deposit and phase separation between substrate and deposit are favoured. The occurrence of a surfactant-like stage, in which a single layer of Ag covers the Fe film is demonstrated for films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the formation of two Ag capping layers is also reported. As the annealing temperature was increased beyond 700 K, the surface layers closely resembled the structure of bare Ag(001) with the residual presence of subsurface Fe aggregates.Comment: 4 pages, 3 figure

    Multiple guests in a single host : interactions across symbiotic and phytopathogenic bacteria in phloem-feeding vectors : a review

    Get PDF
    Some pathogenic phloem-limited bacteria are a major threat for worldwide agriculture due to the heavy economic losses caused to many high-value crops. These disease agents \u2013 phytoplasmas, spiroplasmas, liberibacters, and Arsenophonus-like bacteria \u2013 are transmitted from plant to plant by phloem-feeding Hemiptera vectors. The associations established among pathogens and vectors result in a complex network of interactions involving also the whole microbial community harboured by the insect host. Interactions among bacteria may be beneficial, competitive, or detrimental for the involved microorganisms, and can dramatically affect the insect vector competence and consequently the spread of diseases. Interference is observed among pathogen strains competing to invade the same vector specimen, causing selective acquisition or transmission. Insect bacterial endosymbionts are another pivotal element of interactions between vectors and phytopathogens, because of their central role in insect life cycles. Some symbionts, either obligate or facultative, were shown to have antagonistic effects on the colonization by plant pathogens, by producing antimicrobial substances, by stimulating the production of antimicrobial substances by insects, or by competing for host infection. In other cases, the mutual exclusion between symbiont and pathogen suggests a possible detrimental influence on phytopathogens displayed by symbiotic bacteria; conversely, examples of microbes enhancing pathogen load are available as well. Whether and how bacterial exchanges occurring in vectors affect the relationship between insects, plants, and phytopathogens is still unresolved, leaving room for many open questions concerning the significance of particular traits of these multitrophic interactions. Such complex interplays may have a serious impact on pathogen spread and control, potentially driving new strategies for the containment of important diseases

    Follicular dynamics, corpus luteum growth and regression in multiparous buffalo cows and buffalo heifers

    Get PDF
    ABSTRACT Objective. Characterize the follicular dynamics and luteal growth and regression pattern of multiparous (MB) and heifer (BH) Murrah buffaloes in Colombian tropical conditions. Material and methods. Ten MB and ten BH were synchronized with a progesterone-releasing intravaginal device. No artificial insemination was performed during the estrous and daily ultrasound examinations were performed 15 days later to determine the number and diameter of the structures present in both ovaries in the subsequent natural estrous cycle. The Student’s T test was used to evaluate differences between MB and BH. All data are presented as mean ± standard deviation. Results. The length of the estrous cycle was 22.00±4.50 days for MB and 22.00±2.70 days for BH. Follicular growth occurs in one (n=1; 5.89%), two (n=14; 82.35%) or three waves (n=2; 11.76%). The first wave initiated the day after ovulation with the recruitment of 8.33±2.06 and 10.00±2.72 follicles in MB and BH, while the second wave started on day 11.00±2.00 and 10.50±2.82, presenting 8.37±2.26 and 8.00±1.51 follicles. The third wave began on day 16.21±3.10 showing 6.50±1.70 follicles, only BM had three waves. The maximum luteal diameter was 19.58±4.16 mm and 17.74±3.32 mm respectively. There were no significant differences between the groups for these variables. Conclusions. These results show that the follicular development in buffaloes occurs in waves, where two waves is the most common pattern, as previously reported by other authors
    • 

    corecore