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18 Abstract

19 Phloem-limited bacteria are a major threat for worldwide agriculture due to the heavy economic 

20 losses caused to many high-value crops. These disease agents, namely phytoplasmas, spiroplasmas, 

21 liberibacters and Arsenophonus-like bacteria, are transmitted from plant to plant by phloem-feeding 

22 Hemiptera vectors. The associations established among pathogens and vectors often derive from co-

23 evolution, and hence could result in a complex network of interactions involving also the whole 

24 microbial community harboured by the insect host. Interactions among bacteria may be beneficial, 

25 competitive, or detrimental for the involved microorganisms, and can dramatically affect the insect 

26 vector competence and consequently the spread of diseases. Interferences are observed among 

27 different pathogen strains competing to invade the same vector specimen, causing selective 

28 acquisition or transmission. Bacterial symbionts are another pivotal element for interactions existing 

29 between vectors and phytopatogens, because of their central roles for insect life cycle. Some 

30 symbionts, either obligate or facultative, were shown to have antagonistic effects on the colonization 

31 by plant pathogens, by producing or stimulating the insect production of antimicrobial substances, or 

32 competing for host infection. In other cases, evidences of mutual exclusion between symbiont and 

33 pathogen suggested possible detrimental influence on phytopathogens displayed by symbiotic 

34 bacteria; conversely examples of microbes enhancing pathogen load are available as well. Whether 

35 and how bacterial exchanges occurring in vectors affect the relationships between insects, plants and 

36 phytopathogens are still incompletely characterized issues, leaving room for many open questions 

37 concerning the significance of some traits of these multitrophic interactions. However, such complex 

38 interplays may have a serious impact on pathogen spread and control, having the potential to drive 

39 new strategies for the containment of important diseases.

40

41 Keywords: phytoplasma, liberibacter, spiroplasma, Arsenophonus, symbiotic bacteria, antagonism, 

42 competition
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43 Introduction

44 Phloem-limited bacterial phytopathogens, which are among the most devastating agricultural threats 

45 globally due to their wide host range and symptom severity, strictly rely on insect vectors to be spread 

46 from plant to plant. These pathogenic bacteria are walled Proteobacteria (α- and γ- subclades), and 

47 wall-less Mollicutes. The first group encompasses the α-proteobacterial ‘Candidatus Liberibacter 

48 spp.’, including important pathogens of citrus and vegetable crops (Haapalainen, 2014), and two 

49 Arsenophonus-related γ-Proteobacteria, namely ‘Ca. Phlomobacter fragariae’ and ‘Ca. 

50 Arsenophonus phytopathogenicus’ (Bressan, 2014). Plant pathogenic Mollicutes embrace the genera 

51 ‘Ca. Phytoplasma’ and Spiroplasma.

52 All vectors of plant pathogenic bacteria residing in the phloem are Hemiptera belonging to the 

53 suborders Auchenorrhyncha (with the families Cixiidae, Dictyopharidae and Flatidae in the 

54 Fulgoromorpha infraorder and Cicadellidae in the Cicadomorpha infraorder) and Sternorrhyncha 

55 (superfamily Psylloidaea). Vectors are able to ingest bacteria by feeding in the phloem with their 

56 piecing-sucking mouthparts. Liberibacters are transmitted by psyllids, and Arsenophonus-like 

57 bacteria are vectored by planthoppers in the family Cixiidae. On the other hand, phytoplasmas are 

58 transmitted by leafhoppers (family Cicadellidae), planthoppers (superfamily Fulgoroidea), and 

59 psyllids (superfamily Psylloidea); while spiroplasmas are vectored by leafhoppers only (Gasparich, 

60 2010).

61 The interactions between plant pathogens and their vectors are not limited to a carrier-carried relation: 

62 different species or strains of a plant pathogen have divergent behaviours in different insect hosts. 

63 Moreover, phytopathogenic bacteria are included in a complex network of interactions occurring in 

64 vectors, being actual members of the multifaceted insect microbiomes, which have a significant 

65 influence on the biology of the hosts. Members of the Hemiptera, including all of the vectors of 

66 phloem-limited bacterial plant pathogens, rely on bacterial symbionts for supplying nutrients lacking 

67 in their unbalanced diet (Baumann, 2005). The nutritional provisioning operated by obligate 
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68 symbionts has been a crucial condition for insect persistence and diversification on a limited food 

69 niche such as plant phloem (Skidmore and Hansen, 2017), then affecting the host range of vectors. 

70 High polyphagy deriving from mutualistic associations may in turn influence the chance of different 

71 plants to be infected by a plant pathogen. Moreover, facultative symbionts are commonly found in 

72 many vectors, showing protective functions, or being capable to manipulate the host’s reproduction 

73 (Zchori-Fein & Bourtzis, 2011). In addition, different species or strains of plant pathogens may be 

74 hosted by the same individual vector (Table 1), possibly being transferred together to the host plant 

75 (Bosco & D’Amelio, 2010). Such multipartite interactions most commonly result in microbial 

76 synergies or interference, with potential implications for bacterial transmission as well (Bosco & 

77 D’Amelio, 2010; Saldaña et al., 2017). This review summarizes the available knowledge concerning 

78 microbial exchanges occurring in the vectors of phloem bacterial pathogens, with special regard to 

79 the consequences on their transmission. Disease management could take advantage of these 

80 interactions to develop microbe-based control strategies (Crotti et al., 2012) (Figure 1). Indeed, 

81 despite their capability to easily adapt to, and grow in, different hosts such as plants and insects, 

82 currently these phloem-restricted bacteria cannot be cultured or are difficultly cultivated in cell-free 

83 media –with few exceptions such as spiroplasmas and a single liberibacter species– (Perilla-Herao 

84 &Casteel, 2016), thus limiting experimentations aimed to identify new control strategies. Control is 

85 generally based on the use of healthy plant propagation material, elimination of symptomatic plants, 

86 and control of insect populations spreading the disease. Unravelling the interactions established 

87 between phytopathogens and insect symbionts could offer an interesting tool to impair the 

88 transmission of phloem-limited plant pathogens in a sustainable perspective.

89 Phloem-limited bacterial plant pathogens

90 Liberibacters

91 Transmitted by psyllids, ‘Ca. Liberibacter’ pathogens include primarily obligate parasites of plants 

92 and insects, responsible for several plant diseases, among which huanglongbing (HLB) in citrus trees 
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93 and zebra chip (ZC) in potatoes are the most severe ones in terms of crop damage and economic 

94 losses (Gottwald et al., 2007; Haapalainen, 2014). Three species of ‘Ca. Liberibacter’ have been 

95 indicated as the causal agents of citrus HLB, previously known as citrus greening, i.e. ‘Ca. L. 

96 asiaticus’ (CLas), ‘Ca. L. africanus’ (CLaf), and ‘Ca. L. americanus’ (CLam), the names of which 

97 have been derived from the continents where these bacteria have been originally found and are mainly 

98 distributed (Haapalainen, 2014). While CLaf is transmitted by the African citrus psyllid Trioza 

99 erytreae Del Guercio (McClean & Oberholzer, 1965), CLas and CLam are mainly vectored by the 

100 Asian citrus psyllid Diaphorina citri Kuwayama (Capoor et al, 1967; Teixeira et al., 2005). D. citri, 

101 native to southeastern Asia, has been recently diffused in America probably in consequence of 

102 international commerce (Halbert & Núñez, 2004; Bayles et al., 2017). Despite similar symptoms are 

103 recorded after infection by each of the three HLB-causing species, CLas is the most destructive one, 

104 inducing devastating epidemics in several countries (Haapalainen, 2014). On the other hand, ZC in 

105 potatoes and other diseases in vegetable crops are caused by ‘Ca. L. solanacearum’ (CLso), which 

106 has been initially indicated with the name ‘Ca. L. psyllaurous’ (Liefting et al., 2009). Geographically 

107 distinct CLso haplotypes are known, whose differential distribution results in the association with 

108 separate plant and insect host species. While in North America and Oceania this pathogen is vectored 

109 by the potato/tomato psyllid Bactericera cockerelli Šulc, causing severe damage in potato and tomato 

110 crops, in Europe -where it is transmitted by psyllids of the species Trioza apicalis Förster and 

111 Bactericera trigonica Hodkinson- it is associated with diseases of the Apiaceae family plants, such 

112 as carrot and celery.

113 In the last years, other liberibacter species have been identified, i.e. ‘Ca. L. europeaus’ (CLeu) and 

114 Liberibacter crescens, but differently from the aforementioned species these latter are not reported 

115 as phytopathogens, rather showing an endophytic behaviour (Raddadi et al., 2011; Leonard et al., 

116 2012). Interestingly, L. crescens, found in mountain papaya in Puerto Rico, can be grown in axenic 

117 cultures, making it an optimal candidate to study liberibacters’ biology (Leonard et al., 2012; Fagen 
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118 et al., 2014a,b). On the other hand, CLeu, reported as an endophyte of pear, apple, blackthorn and 

119 hawthorn, transmitted by Cacopsylla spp. (Raddadi et al., 2011; Camerota et al., 2012), has been 

120 recently indicated as a pathogen in Scotch broom (Cytisus scoparius) in New Zealand (Thompson et 

121 al., 2013). Recently, other two new candidate liberibacter species were recently reported: the ‘Ca. 

122 Liberibacter caribbeanus’ (CLca) detected in Citrus sinensis (L.) Osbeck and in the citrus psyllid D. 

123 citri from Colombia (Keremane et al., 2015) and the ‘Ca. Liberibacter brunswickensis’ (CLbr) 

124 detected in the native Australian eggplant psyllid, Acizzia solanicola Kent & Taylor (Morris et al., 

125 2017). Neither these new species were associated with plant disease but a co-evolution with psyllids 

126 as secondary symbionts is inferred (Morris et al., 2017).

127 Arsenophonus-like bacteria

128 Arsenophonus genus includes not only plant pathogens, but also insect parasites and symbionts 

129 (Bressan, 2014). For instance, in a survey performed on 136 arthropod species it has been found that 

130 Arsenophonus bacteria are associated with 5% of the tested hosts (Duron et al., 2008), where they 

131 can establish complex interactions with beneficial or parasitic features (Wilkes et al., 2011). 

132 Conversely, two species are cause of disease to strawberry and sugar beet plants (Danet et al., 2003; 

133 Bressan et al., 2008). The first pathogenic agent was discovered at the end of last century in France 

134 on strawberries affected by marginal chlorosis. Because at that time very little was known about this 

135 genus, the pathogen was considered as a separate species that was named ‘Ca. Phlomobacter 

136 fragariae’ (Zreik et al., 1998); nonetheless the increase of sequence data availability led to propose it 

137 to be an Arsenophonus (Bressan, 2014). The other plant pathogenic Arsenophonus is ‘Ca. 

138 Arsenophonus phytopathogenicus’ which infects sugar beet, causing a disease defined as “basses 

139 richesses” syndrome, because diseased plants show decreased sugar content (Richard-Molard et al., 

140 1995). The insect vectors of pathogens in the Arsenophonus group are cixiids: ‘Ca. Phlomobacter 

141 fragariae’ is vectored by Cixius wagneri (China) (Danet et al., 2003), whereas ‘Ca. Arsenophonus 

142 phytopathogenicus’ is transmitted by Pentastiridius leporinus (L.) (Gatineau et al., 2002). These two 
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143 pathogens are phylogenetically distinct, and can differentially interact with plants and insects in 

144 different contexts. ‘Ca. Arsenophonus phytopathogenicus’ was observed in Italy to be related to a 

145 strawberry marginal chlorosis disease (Terlizzi et al., 2007); likewise it was detected in C. wagneri, 

146 which was able to inoculate it to sugar beet plants, whereas strawberries were not infected (Bressan 

147 et al., 2008). Moreover, the epidemiology of this group of diseases is complicated by the fact that 

148 they can be induced also by phytoplasmas transmitted by Hyalesthes obsoletus Signoret (Gatineau et 

149 al., 2002, Danet et al., 2003). Even being plant pathogens, there is evidence that many traits of 

150 Arsenophonus-like bacteria are characteristic of an insect symbiont lifestyle, such as reproductive 

151 tissue colonization and vertical transmission, absence of entomopathogenic activity, high infection 

152 rate and a life cycle prevalently related to insect hosts (Bressan, 2009b; 2014). Thus, these bacteria 

153 could easily initiate new associations with additional cixiid species. The complexity of their 

154 associations with insects and plants, jointly to cixiids’ capability to easily adapt to new environments 

155 and host plants, could effectively explain the increasing appearance of emerging Arsenophonus-

156 related diseases.

157 Phytoplasmas

158 Phytoplasmas are known to be responsible for diseases in over a thousand of economically important 

159 crops globally distributed (Marcone, 2014): typical symptoms include yellowing, witches’ broom, 

160 virescence, phyllody, bolting, reddening of leaves and stems, decline and stunting of plants 

161 (Hogenhout et al., 2008). To date, all known phytoplasmas are reported to be pathogenic for at least 

162 one plant, even though asymptomatic hosts may be recruited. Phytoplasma taxonomy has been 

163 hampered by their recalcitrance to be cultured in vitro; therefore these bacteria are partially classified 

164 in the provisional genus ‘Ca. Phytoplasma’ based on sequence analysis; up to now 42 ‘Ca. 

165 Phytoplasma’ species have been reported (Zhao & Davis, 2016). A more exhaustive categorization 

166 defines phylogenetic clusters (16SrI-XXXIII groups, each one divided in many subgroups) according 

167 to 16S rRNA gene sequence (Lee et al., 1993, 1998b; Zhao & Davis, 2016). 
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168 Since most phytoplasmas are capable to cause symptoms to a number of plants belonging to different 

169 families, such phytopathogens are regarded as some of the most troubling disease agents in these 

170 areas. Moreover, some phytoplasmas are successfully transmitted by polyphagous vectors, furtherly 

171 incrementing their chance to infect a huge number of plants. For example, Aster Yellows 

172 phytoplasmas (16SrI) are vectored by many polyphagous leafhoppers to several plants (Weintraub & 

173 Beanland, 2006), including different flowers, vegetables, or grapevine. The broad range of wild and 

174 cultivated plants that are affected by these pathogens can be explained by the polyphagy recorded for 

175 most of vectors, along with the great diversity of phytoplasma subclades within this group 

176 (Hogenhout et al., 2008). 

177 Considering vector-phytoplasma interplays, many specific interactions are acknowledged between 

178 different phytoplasma phylogenetic groups and distinct taxa of vectors. As an example, only 

179 leafhoppers in the family Cicadellidae have been reported to transmit phytoplasmas of the 16SrI 

180 group (Alma et al., 2015). On the other hand, many phytoplasmas are indistinctively vectored by 

181 distant insects. For instance, phytoplasmas of the phylogenetic groups 16SrV and 16SrXII may be 

182 vectored by members of either Fulgoromorpha and Cicadomorpha, and 16SX phytoplasma can be 

183 transmitted both by Auchenorrhyncha and Sternorrhyncha (Alma et al., 2015). However, a single 

184 family with major vector importance can be generally recognized even for pathogens transmitted by 

185 distinct taxa: in the case of 16SrV phytoplasmas, most of vectors belong to Cicadellidae, 16SrXII 

186 phytoplasmas are mainly transmitted by cixiids, and the major vectors 16SrX phytoplasmas are 

187 members of Psyllidae. 

188 Spiroplasmas

189 Spiroplasmas are regarded as an extremely harmful group for global agriculture, even though only 

190 few species have been accounted as phytopathogens, i.e. Spiroplasma citri in citrus, S. kunkelii in 

191 maize and S. phoeniceum in aster (Gasparich, 2010). All plant pathogenic spiroplasmas are 

192 phylogenetically related, being included in the same taxonomic lineage, namely the Citri clade 
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193 (Garsparich, 2010). Despite spiroplasmas and phytoplasmas establish similar pathogenic 

194 relationships with host plants, inducing analogous symptoms, major biological differences are evident 

195 between these genera. Distinctions include the bacterial shape, as spiroplasmas are characterized by 

196 the helical morphology and phytoplasmas are pleomorphic, and cultivation suitability, as 

197 spiroplasmas can be cultured in nutrient-rich media while phytoplasmas are recalcitrant to cultivation 

198 (Gasparich, 2010).

199 S. citri is mainly related to heavy economic losses to citrus productions; however this pathogen, as 

200 well as its vectors, may be found on many different host plants. Namely, S. citri is the agent of citrus 

201 stubborn, brittle root disease of horseradish, sesame yellowing, and carrot purple leaf (Zarei et al., 

202 2017); it is transmitted by the leafhoppers Circulifer haematoceps (Mulsant & Rey) in the 

203 Mediterranean basin and Circulifer tenellus (Baker) in North America (Renaudin, 2006). The main 

204 areas affected by S. citri-related diseases are the Mediterranean countries of Europe, North Africa, 

205 and western Asia, as well as the Nearctic region, whereas the pathogen is absent in South America. 

206 S. kunkelii is an important pathogen of maize crops, even though its distribution is restricted to the 

207 Americas. Its natural vector is the cicadellid Dalbulus maidis (Delong & Wolcott), which is a 

208 specialist of the genus Zea present in the Nearctic and Neotropical areas. D. maidis is co-evolved 

209 with maize, where it can be among the most prevalent leafhoppers (Palomera et al., 2012).

210 The third plant pathogenic spiroplasma species is S. phoenicium, which was retrieved from periwinkle 

211 plants affected by yellows in Syria. This pathogen is experimentally transmitted by the leafhopper 

212 Macrosteles fascifrons (Stål); however, at present no information is available concerning the natural 

213 vectors of S. phoeniceum in the infested area (Saillard et al., 1987).

214 Bacterial phytopathogen-vector relations

215 In the vectors, the phloem-restricted pathogens are transmitted in a persistent manner: once ingested 

216 by trophic activity on infected plants, bacterial cells multiply in the insect midgut, cross the 

Page 9 of 40 Entomologia Experimentalis et Applicata

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

10

217 epithelium, replicate in the hemolymph and, ultimately, infect the salivary glands to be further 

218 injected in the new host plant (Figure 1; Gasparich, 2010; Bressan, 2014; Haapalainen, 2014). This 

219 process implies complex interplays, spanning from beneficial to adverse. A benign role was suggested 

220 for CLas in D. citri (Duan et al., 2009; Mann et al., 2011), although an increased susceptibility to 

221 selected insecticides was observed in infected psyllids, resulting in fitness decrement (Mann et al., 

222 2011). Similarly, a negative density-dependent effect of CLso infection on the fecundity of B. 

223 cockerelli was reported by (Nachappa et al., 2014), whereas no significant detrimental effects on the 

224 biology of infected individuals occurs according to Thinakaran et al (2015). Effects of vector 

225 manipulation by a phytopathogen have been observed also at the hemolymph level, as in CLas-

226 infected D. citri showing changes in proteins related to energy metabolism, immunity, and lipid 

227 transport (Kruse et al., 2018). Differential effects have been reported for insect-phytoplasma 

228 associations: for example, shorter survival and a lower egg production were observed in individuals 

229 of Scaphoideus titanus Ball infected by 16SrV phytoplasmas (Bressan et al., 2005a), whereas a 

230 positive influence have been recorded for 16SrI phytoplasmas in Macrosteles quadrilineatus DeLong 

231 & Caldwell (Beanland et al., 2000). 

232 The molecular mechanisms regulating plant pathogens retention, multiplication and spread in the 

233 body of some species, and not in others, are still poorly understood. The biological adaptation of 

234 vectors to harbour plant pathogens suggest a co-evolution between insects and bacteria; however, 

235 these interactions have polyphyletic traits, indicating multiple independent evolution events 

236 (Orlovskis et al., 2015). The evolution of pathogen transmission shares some traits with insect 

237 symbiosis, as most of plant pathogens are phylogenetically related to many symbiotic bacteria of 

238 Hemiptera, and similarly to endosymbionts they have reduced genomes, reflecting the adaptation to 

239 obligate associations (Bendix & Lewis, 2018). Indeed, a major consequence of a host-dependant life 

240 style is an extreme gene loss, due to the lack of a selection process capable to maintain superfluous 

241 genes in the rich environment provided by the insect body (Latorre & Manzano-Marín, 2017). In most 
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242 cases, the associations between plant pathogens and their vectors are believed to be originated from 

243 bacterial internalization and successful survival in insects feeding transiently in infected plants (plant-

244 first model). Conversely, some phytopathogens, especially those in the Enterobacteriaceae family, 

245 may have been initially insect commensals (i.e. non-harmful associates) that have evolved as plant 

246 pathogens following repeated inoculations in the phloem by their insect hosts (insect-first model) 

247 (Bové & Garnier, 2002; Nadarasah & Stavrinides, 2011).

248 Traits affecting vector suitability and specificity are thought to be related to difference in insect 

249 physiology, immunity, and behaviour, as well as to their geographical and seasonal distribution 

250 (Perilla-Hernao & Casteel, 2016). For instance, divergent plant host-dependant feeding behaviours 

251 have been suggested to play an important role in differential transmission competence observed in 

252 the leafhopper phytoplasma vectors Euscelidius variegatus (Kirschbaum) and Empoasca decipiens 

253 Paoli (Galetto et al., 2011). Moreover, the vector immune system may limit pathogen invasion. In D. 

254 citri, CLas acquisition by adult specimens was proven to be significantly less efficient than by 

255 nymphs due to differential immune responses, like melanization and apoptosis of gut cells (Kruse et 

256 al., 2017). Similarly, immune response may be the cause of limited phytoplasma cell number found 

257 in non-transmitting individuals of different vector species after experimental exposure to the 

258 pathogens (Galetto et al., 2009). A crucial phase of the transmission process is the protein interaction 

259 between pathogen cells and those of the host, regulating pathogen crossing of gut and salivary glands 

260 epithelia. The main strategy for bacterial internalization reported for plant pathogenic agents is endo-

261 exocytosis (Kwon et al., 1999; Hogenhout et al., 2008; Cicero et al., 2016), mediated by different 

262 membrane proteins (Labroussaa et al., 2010, 2011; Béven et al., 2012; Duret et al., 2014; Konnerth 

263 et al., 2016; Arricau-Bouvery et al., 2018). The absence of specific adhesion machinery to host cells 

264 seriously weakens the vector competence (Weintraub & Beanland, 2006). For example, S. citri strains 

265 lacking adhesion-related proteins are not transmissible by insects (Kruse et al., 2017). 
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266 The transmission of a plant pathogen by vectors is affected also by the fact that different species or 

267 strains of a plant pathogen have divergent behaviours in different insect hosts. This is especially 

268 observed for those phytopathogens that most probably derive from insect symbionts, such as 

269 Arsenophonus bacteria and spiroplasmas. Both the genera Arsenophonus and Spiroplasma encompass 

270 inter- and intracellular symbiotic bacteria displaying a diversity of roles, from mutualism to 

271 reproductive manipulation, or may even be entomopathogenic (Gasparich, 2010, Bressan, 2014). In 

272 ‘Ca. A. phytopathogenicus’ and ‘Ca. P. fragariae’, it has been shown that the exploitation of plants 

273 resulted from independent evolutionary events from a common endosymbiotic ancestor (Bressan, 

274 2014). This evidence, along with the observation of typical symbiotic traits in insects, like high 

275 prevalence and maternal transmission, suggests their transition from endosymbiotic to plant 

276 pathogenic life style (Bressan, 2014). Besides, some species belonging to other phytopathogen groups 

277 could actually derive from insect commensals. For example, phylogenetic studies demonstrated a 

278 match between the affinity level of liberibacter species restricted to different continents and the 

279 geographical distribution of psyllid hosts. This supported the hypothesis of a co-evolution between 

280 CLbr, behaving as an insect secondary symbiont, and its host A. solanicola (Morris et al., 2017). On 

281 the other hand, co-evolved associations involving a plant pathogen and an insect vector may lead to 

282 mitigate possible harmful effects exhibited on the host fitness (Purcell, 1982). The growing number 

283 of observed transitions from insect endosymbiosis to plant pathogeny and vice versa is certainly 

284 indicative of the possibility that new bacterial species, currently believed to be horizontally 

285 transmitted insect commensals or mutualists, will become emerging plant pathogens in the future.

286 The study of phytopathogen-vector interactions has a remarkable pertinence from a disease 

287 containment perspective, because differential molecular targets for control could be derived from 

288 distinct associations involving co-evolution, mutualism or insect injury. For example, the 

289 enhancement of insect immunity could be a specific control objective in case of pathogen-vector 

290 interactions where the bacterium is definitely recognized and attacked by immune cells due to non-
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291 beneficial interchange (Weiss & Aksoy, 2011). In contrast, some phytopathogens that are anciently 

292 related to and co-evolved with their insect hosts are able to escape the immune response. For example, 

293 S. citri has been reported to evade phagocytosis and limit phenoloxidase activity in its vector C. 

294 haematoceps (Eliautout et al., 2016). In those cases, control approaches based on immune 

295 augmentation may be insufficient.

296 Multiple pathogen infections and competition

297 The interaction among pathogens, plants and vectors can be extremely complex. Mixed infections by 

298 different bacterial pathogens can quite commonly be observed in the phloem of the same plant. The 

299 simultaneous occurrence of multiple pathogens in the same plant is rather frequent in herbaceous 

300 plants and trees belonging to many families; either related and phylogenetically distant pathogenic 

301 agents may co-exist (Križanac et al., 2010; Nicolaisen et al., 2011; Arratia-Castro et al., 2016; Satta 

302 et al., 2016; Swisher et al., 2018). Moreover, a single insect can feed on several plants, or even 

303 different plant species, during its life cycle, possibly being exposed to mixed pathogen infections. As 

304 a consequence, insect vectors may acquire many pathogen species or strains during the same feeding 

305 event, or by feeding sequentially on host plants infected by different bacteria (Križanac et al., 2010; 

306 Raddadi et al., 2011; Swisher et al., 2018) (Table 1). However, in some cases, the co-occurrence of 

307 multiple pathogens in the same insect’s body is inhibited by interferential interactions such as 

308 selective acquisition or transmission of a single microbe (Bosco & D’Amelio, 2010). For example, 

309 in the leafhopper Dalbulus maidis (Delong & Wolcott), which is the natural vector of maize bushy 

310 stunt phytoplasma (MBSP) and corn stunt spiroplasma (CSS), competition for transmission was 

311 reported after co-occurrence during a long-term latency period (de Oliveira et al., 2007). This 

312 competition resulted in suppression of prolonged transmission of MBSP after acquisition of CSS, as 

313 the latter is thought to have faster rates of multiplication and spread, hence being more competitive 

314 during the latency period required for successful transmission. Similar results were obtained with the 

315 cicadellid M. quadrilineatus, vector of several strains of Aster Yellows Phytoplasma. Leafhoppers 
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316 exposed to sequential acquisition of different phytoplasma strains most frequently transmitted the 

317 first provided isolate exclusively (Freitag, 1967). These evidences suggest competitive colonization 

318 of the insect’s body, where the first strain starting multiplication and reaching the salivary glands is 

319 more competitive and hence preferentially transmitted (Bosco & D’Amelio, 2010). The same 

320 competitive colonization process was proposed for Osbornellus horvathi Matsumura, since ‘Ca. P. 

321 asteris’ and ‘Ca. P. phoenicium’ double-infected adult leafhoppers were able to transmit the former, 

322 but not the latter, to different plants in experimental conditions (Rizza et al., 2016). Considering 

323 Arsenophonus-related plant pathogens, no specific transmission trial from double-infected sources 

324 has been reported yet; however there are evidences that separated populations of Cixius wagneri 

325 (China), the only known vector of both pathogens, exclusively transmit ‘Ca. A. phytopathogenicus’ 

326 or ‘Ca. P. fragariae’ but do not carry the two bacteria together (Bressan et al., 2008). Many factors 

327 must be taken into account to explain exclusive pathogen acquisition by C. wagneri, including vector 

328 ecology and population dynamics, which could lead to limited chance for the same individual to be 

329 exposed to both pathogens; however the competition between ‘Ca. A. phytopathogenicus’ and ‘Ca. 

330 P. fragariae’ for insect colonization cannot be ruled out.

331 The competition between two bacterial pathogens in the vectors has been better dissected by Rashidi 

332 et al. (2014), by using the leafhopper E. variegatus and two unrelated phytoplasmas, namely 

333 Chrysantheum Yellows phytoplasma (CYP) and Flavescence Dorée Phytoplasma (FDP), 

334 experimentally transmitted to broad bean plants. The authors found that insects sequentially exposed 

335 to acquisition of CYP and FDP showed unilateral interference, with the suppression of FDP 

336 transmission regardless of the feeding order. On the other hand, the acquisition of each pathogen was 

337 not affected by the presence of the other one, suggesting no competition at the earlier infection stages. 

338 The barrier where competition takes place was rather identified in salivary glands, which were more 

339 rapidly invaded by CYP due to its capability to multiply faster than FDP, even though the latter 

340 bloomed to higher concentrations. The higher speed in reaching salivary glands displayed by CYP 
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341 was suggested to be related to: i) long co-evolution with the insect host and consequent mitigated 

342 immune response, and ii) broad phytoplasma host range supporting the evolution of traits that 

343 promote acceptability by a broad vector range (Rashidi et al., 2014). Transcriptomic analysis of 

344 infected leafhoppers with single phytoplasma strains demonstrated the activation of insect immune 

345 response (by activation of Kazal type 1 serine protease inhibitor and melanisation pathway) after 

346 infection by FDP, which reduces the host fitness and is then perceived as a potential pathogen (Galetto 

347 et al., 2018). Instead, the most competitive CYP increased energy metabolism, providing molecular 

348 confirmation for different competition levels.

349 The knowledge on competition between co-occurring pathogen strains in the same host, although 

350 being still limited, could support the study of pathogen transmission. Indeed, the observation and 

351 characterization of competition events may contribute to unravel meaningful details of the processes 

352 determining insect invasion and spread of phytopathogens, possibly identifying weaknesses of single 

353 associations and revealing new control targets. Moreover, competitive transmission of different plant 

354 pathogens may seriously alter disease epidemiology in the field.

355 Symbiont-pathogen interactions

356 The Auchenorrhyncha and Sternorrhyncha, including the vectors of plant pathogenic bacteria, 

357 harbour both obligate and facultative endosymbionts which play important roles in supplying 

358 nutrients and providing the host with other fitness benefits (Baumann, 2005; Morrow et al., 2017). 

359 The main obligate (primary) symbiont are ‘Ca. Sulcia muelleri’ in Auchenorrhyncha, and ‘Ca. 

360 Carsonella ruddii’ in psyllids. Moreover, Sulcia requires complementary (co-primary) symbiotic 

361 bacteria to integrate its nutrient supply to the insect (McCutcheon & Moran, 2010). Similarly, psyllids 

362 harbour secondary symbionts, such as Sodalis or Arsenophonus bacteria, with nutritional roles 

363 (Morrow et al., 2017). In addition, the function of some symbionts of hemipterans vectors is still 

364 unrecognized. For example, many bacteria generally known as reproductive manipulators, such as 

365 Wolbachia, Cardinium, Rickettsia and Arsenophonus, have been found in several vector species; 
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366 however their role has not been characterized yet (Marzorati et al., 2006; Gonella et al., 2011; Jing et 

367 al., 2014; Morrow et al., 2017; Iasur-Kruh et al., 2017). Moreover, some insect beneficial 

368 microorganisms (e.g. Rickettsia and Cardinium), capable to colonize the salivary glands, may be 

369 transferred from insect to plant and vice versa, possibly establishing endophytic relationships as well 

370 (Caspi-Fluger & Zchori-Fein, 2010; Gonella et al., 2015; Iasur-Kruh et al., 2017). Despite the 

371 emerging recognized need to study microbial communities affiliated to non-model insects 

372 (Prosdocimi et al., 2015), which recently led to a growing number of evidences of co-existence of 

373 plant pathogens and other microbes in the insect vectors, few studies directly investigated their 

374 interactions (Table 2). Symbiont-pathogen exchanges were firstly studied in psyllids, and more 

375 specifically in the CLas vector D. citri. This psyllid harbours three main endosymbionts: a species of 

376 Wolbachia, the γ-Proteobacterium ‘Ca. Carsonella ruddii’, an endosymbiont which may provide 

377 nutritional benefits to its host (Thao et al., 2000), and ‘Ca. Profftella armatura’, a β-Proteobacterium 

378 with defensive function (Nakabachi et al. 2013). Fagen et al. (2012) firstly observed a negative 

379 correlation between CLas infection rate with the relative abundance, within the microbial community, 

380 of Profftella. Based on its genome sequence, Profftella was predicted to produce defensive toxins, 

381 i.e. diaphorin and diaphorin-related polyketides. CLas-infected [CLas(+)] insects were found to have 

382 dramatically elevated levels of two proteins involved in polyketide biosynthesis. In contrast, the 

383 protein responsible for initiating diaphorin biosynthesis is down-regulated in CLas(+) D. citri 

384 (Ramsey et al., 2015). Moreover, Ramsey et al. (2015) observed that the ratio between levels of 

385 diaphorin and the related polyketide is significantly increased in CLas (+) compared to CLas 

386 uninfected [CLas(-)] D. citri, suggesting changes in Profftella polyketide metabolism in response to 

387 the presence of the pathogen or in direct or indirect response to changes induced by the pathogen in 

388 infected plants. The up-regulation of the polyketide synthase (PKS) gene expression in CLas(+) D. 

389 citri may be a specific response of Profftella to the presence of CLas, as part of an infection response 

390 that may be mediated by D. citri (Ramsey et al., 2015). Such an interactive response may involve 
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391 Carsonella as well, which could provide the host with essential amino acids required for polyketide 

392 production (Ramsey et al., 2015).

393 Besides psyllid-liberibacter interactions, further evidences of antagonistic relationships between 

394 symbiotic bacteria and plant pathogens are reported for some Auchenorrhyncha vectors of 

395 phytoplasmas. A bacterium in the Xanthomonadaceae, provisionally named Dyella-like bacterium 

396 (DLB) (Iasur-Kruh et al., 2017), was isolated from the planthopper H. obsoletus, and showed anti-

397 phytoplasmal activity in inoculated plants (Iasur-Kruh et al., 2018). Indeed, despite being isolated 

398 from an insect source, DLB showed endophytic traits: it was consistently found in the wild bush Vitex 

399 agnus-castus L., and it was able to long-term colonize the phloem of different plant species, including 

400 many hosts of phytoplasmas and liberibacters (Lidor et al., 2018). Once established in grapevines 

401 infected by phytoplasmas, DLB reduced disease symptoms (Iasur-Kruh et al., 2018). Based on DLB 

402 genome analysis, the authors suggested that such a drop of symptoms is related to inhibition of 

403 pathogens, rather than competition or production of substances stimulating plant growth or defense 

404 (Lahav et al., 2016; Iasur-Kruh et al., 2018). Moreover, DLB was demonstrated to inhibit the growth 

405 of the cultivable model Mollicute Spiroplasma melliferum (Iasur Kruh et al., 2017).

406 Acetic acid bacteria in the genus Asaia are widespread in insects, including leafhoppers transmitting 

407 phytoplasmas, and they were proposed to interact with insect vectors, possibly altering their spread 

408 (Crotti et al., 2009). Strains with different phenotypes previously isolated from mosquitoes were 

409 orally supplied to the experimental vector of FDP E. variegatus, which was successfully colonized. 

410 One Asaia strain producing an air-liquid interface biofilm, after establishing in E. variegatus, reduced 

411 its acquisition of FDP from broad beans in experimental conditions (Gonella et al., 2018). These 

412 authors suggested that the strain of Asaia could affect the capability of the phytoplasma to cross the 

413 gut epithelia for reaching salivary glands, even though the mechanisms regulating this interference 

414 remain to be elucidated. However, such an alteration was imperfect and, when the pathogen 

415 succeeded in colonizing the insect, transmission rates to broad beans were similar to those recorded 

416 for control leafhoppers unexposed to Asaia (Gonella et al., 2018).
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417 Additional interplays between symbiotic bacteria and plant pathogens have been suggested by 

418 multiple prevalence studies, as in some cases positive correlation or mutual exclusion could be 

419 detected between symbiotic and phytopathogenic bacteria. For example, the obligate symbiont 

420 Nasuia, largely widespread in the family Cicadellidae, is present in most of leafhopper species 

421 transmitting phytoplasmas, while non-vector species were shown to lack it (Wangkeeree et al., 2012). 

422 It has been suggested that Nasuia could be required for successful transmission. Likewise, in the 

423 planthopper FDP vector, Dictyophara europaea L., a negative correlation between infections by 

424 phytoplasma and Wolbachia was reported, suggesting that the Wolbachia strain infecting D. europaea 

425 displays antagonistic activities against the pathogen, or alternatively competes for insect colonization 

426 (Krstić et al., 2018). On the other hand, in D. citri an increase in the ubiquitous Wolbachia titre was 

427 reported with CLas infection (Fagen et al., 2012), indicating a more complicated interplay mechanism 

428 with strain-specific variability. Direct interaction has been documented between Wolbachia and 

429 CLas, as the first suppress the holing lytic promoter in a CLas-infecting phage in D. citri (Jain et al., 

430 2017).

431 The studies regarding synergies and interferences between symbiotic agents and plant pathogens offer 

432 significant cues for disease treatment; moreover, further work is still required to describe new 

433 interactive associations. Future work concerning such interplays should be aimed not only to identify 

434 direct anti-pathogen activity expressed by symbionts, but also to alter the mutualistic exchange 

435 recorded among vectors, symbionts and phytopathogens, and to influence insect ecology (e.g. by 

436 driving plant choice and governing interactions with stresses).

437

438 Conclusions and open issues

439 The interactive roles of phytopathogenic and symbiotic bacteria in insects certainly represent an 

440 emerging topic for researchers focusing on the transmission process of disease agents. A multi-actor 

441 picture, involving insects, plants, and microbes, is resulting as the condition where the transmission 
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442 of plant pathogens arises. Consequently, the bacterial interactions occurring in insects affect the life 

443 cycle of the host as well. First, considering the reported evolutive bilateral transition of the role of 

444 many disease agents in their vectors from symbiotic to phytopathogenic life style, the effects of these 

445 bacteria are a key issue for the study of insect-microbe relationships; however they are still mostly 

446 unknown. Such effects may also result in the uneven competitive behaviours described for both 

447 closely and distantly related pathogens. Many questions arise from this hypothesis. How is insect 

448 immunity involved in differential growth rates of plant pathogens? What are the traits of vector-

449 pathogen interaction originating possible diversity in host responses? Are these bacteria at different 

450 steps of transition from symbiont to pathogen or vice versa (e.g. the most competitive pathogens 

451 supply the host with fitness advantages)? Most of these questions were addressed by Galetto et al. 

452 (2018) using the E. variegatus-CYP-FDP model, but more work is needed to expand the analysis of 

453 competitiveness conditions to different pathogens and vectors. Moreover, it is still unclear whether 

454 non-competitive or beneficial interactions take place among pathogens in insects where multiple 

455 infections are observed. Finally, how the plants are implicated in these interactions? Many examples 

456 are available on the effects displayed by phytopathogens on the plant processes in favour of insects, 

457 such as the promotion of insect attraction to infected hosts, allowing the pathogen spreading 

458 (Orlovskis et al., 2015). However, whether pathogens that are capable to modulate their attractiveness 

459 could display enhanced competitiveness against horizontally transmitted microbes (including other 

460 phytopathogens) is poorly understood. Deep surveys of molecular and cellular machineries of insect-

461 phytopathogen-host plant relations could provide the answers to these issues.

462 Additional open questions involve the role of bacterial symbionts in plant pathogen competition and 

463 spread. Only few examples of interactions between symbionts and pathogens have been described, in 

464 spite of the high number of symbiotic bacteria depicted in most of vectors: direct evidences of an 

465 interference with the transmission process in the insect or with symptom development in the plant 

466 have been provided only for phytoplasmas (Gonella et al., 2018; Iasur-Kruh et al., 2018). 
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467 Furthermore, the mechanisms regulating beneficial or hostile exchanges have been only rarely 

468 elucidated, and some bacterial pathogens were shown to exhibit mutualistic effects on their vectors, 

469 while other caused fitness costs (Hogenhout et al., 2008; Tamborindeguy et al., 2017). An open field 

470 for future research is the awareness of whether harmful or beneficial roles are in some way the result 

471 of interactions with bacterial symbionts co-inhabiting the same host. A similar evidence of indirect 

472 effect on the insect fitness as a consequence of symbiont suppression was observed in virus-

473 transmitting aphids. In the soybean aphid Aphis glycines Matsumura, a drop in the concentration of 

474 the endosymbiotic Buchnera was observed in insects exposed to the beetle-transmitted bean pod 

475 mottle virus, resulting in reduced aphid fecundity (Cassone et al., 2015). 

476 Finally, a still unexplored field for vectors of phloem-limited pathogen is the manipulation of 

477 symbiotic microbes to drive their interaction with plant pathogens toward antagonistic activities, by 

478 means of paratransgenesis. A similar approach was proposed for example for a xylem-restricted 

479 pathogenic agent, i.e. the Xylella fastidiosa strain causing Pierce disease to grapevine. A bacterium 

480 reported as an insect symbiont and an endophyte, Alcaligenes xylodoxidans denitrificans, was 

481 proposed as a candidate agent to be genetically transformed to display anti-Xylella molecules (Bextine 

482 et al., 2004).

483 Along with being of certain interest to elucidate biological mechanisms regulating insect-bacteria 

484 relationships, the gain of knowledge concerning microbial interactions occurring in insect vectors 

485 have important implications for disease epidemiology and control. From the epidemiological point of 

486 view, the competition among plant pathogens alters the rates of transmission by vectors, and possibly 

487 influences their fitness as well, with a final impact of the spread of diseases on different plants. From 

488 the point of view of disease control, the study of microbial interactions in the vectors could provide 

489 valuable tools to manage crop infections by altering vector competence via symbiotic control 

490 approaches (Alma et al., 2010). Possible strategies include the identification of detrimental effects 
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491 played by symbionts on plant pathogens in the insect, or the selection of new molecular targets to 

492 interrupt beneficial interplays among bacteria.

493
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826 Table legends

827 Table 1 Multiple bacterial infections in the vectors of phloem-limited pathogens. Only reports 

828 showing mixed infections in the same host individual, involving distinct plant disease agents or 

829 symbiotic bacteria with phytopathogens, are listed.

830

831 Table 2 Symbiont-pathogen interactions reported in the vectors of phloem-limited plant pathogenic 
832 bacteria.

833

834 Figure legends

835 Figure 1 Insect symbionts could be useful for controlling the transmission of phloem-limited plant 

836 pathogens. Phloem-restricted plant pathogens are indicated as red, purple or violet dots, while 

837 microbial symbionts are depicted with other different colours. Microbe movements are indicated with 

838 red arrows. Symbiont-mediated control mechanisms of pathogen transmission are listed on the right 

839 and corresponding numbers are depicted in gut (in green circles), hemolymph (in orange circles) and 

840 salivary glands (inset, in blue circles).

Page 36 of 40Entomologia Experimentalis et Applicata

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

1

1 TABLES

2

Vector taxonomic 

position

Vector 

family
Vector species

Phytopathogen 

multiple infection

Symbiont - 

phytopathogen 

multiple infection

Reference

Hyalesthes obsoletus 

Signoret

‘Ca. Sulcia muelleri’ + 

Wolbachia + ‘Ca. 

Vidania fulgoroidaeae’ 

+ ‘Ca. Purcelliella 

pentastirinorum’ + 

16SrXII phytoplasma

Gonella et al., 

2011

Auchenorrhyncha - 

Fulgoromorpha
Cixiidae

Pentastiridius 

leporinus L.

‘Ca. Sulcia muelleri’ + 

‘Ca. Purcelliella 

pentastirinorum’ + 

Wolbachia + ‘Ca. 

Arsenophonus 

phytopathogenicus’

Bressan et al., 

2009a

Amplicephalus 

curtulus Linnavuori & 

DeLong

Phytoplasmas, 

groups: 16SrI + 

16SrXII

Longone et al., 

2011

Amplicephalus 

funzaensis Linnavuori

Phytoplasmas, 

groups: 16SrI + 

16SrVII

Perilla‐Henao et 

al., 2016

Circulifer tenellus 

(Baker)

16SrVI 

phytoplasma + S. 

citri

Lee et al., 1998a

Swisher et al., 

2018

Euscelidius 

variegatus Kirshbaum

Phytoplasmas, 

groups: 16SrI + 

16SrV

bacterium of E. 

variegatus (BEV) + 

16SrI phytoplasma 

Asaia + 16SrV 

phytoplasma

Rashidi et al., 

2014

Galetto et al., 

2009

Gonella et al., 

2018

Euscelis incisus 

(Kirschbaum)

Phytoplasmas, 

groups: 16SrI + 

16SrIII + ‘Ca. 

Phytoplasma pruni’

Orságová et al., 

2011

Euscelis lineolatus 

Brulle

Phytoplasmas, 

groups: 

16SrII+16SrXII

Landi et al., 

2013

Exitianus atratus 

Linnavuori

Phytoplasmas, 

groups: 16SrI + 

16SrVII

Perilla‐Henao et 

al., 2016

Graminella nigrifrons 

(Forbes)

Phytoplasmas, 

groups: 16SrI + 

16SrVII 

16SrI + 16SrX

Arocha-Rosete 

et al., 2011

Macrosteles 

sexnotatus (Fallén)

‘Ca. Sulcia muelleri’ + 

Nasuia + 16SrI 

phytoplasma

Ishii et al., 2013

Macrosteles striifrons 

Anufriev

‘Ca. Sulcia muelleri’ + 

‘Ca. Nasuia 

deltocephalinicola’ + 

16SrI phytoplasma

Ishii et al., 2013

Matsumuratettix 

hiroglyphicus 

(Matsumura)

Bacterium associated 

with M. hiroglyphicus 

(BAMH) (Nasuia) + 

‘Ca. Sulcia muelleri’ + 

16SrXI phytoplasma

Wangkeeree et 

al., 2012

Auchenorrhyncha- 

Cicadomorpha
Cicadellidae

Osbornellus horvathi 

Matsumura

‘Ca. Phytoplasma 

asteris’ + ‘Ca. 

Phytoplasma 

phoenicium’

Rizza et al., 

2016
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Paratanus exitiosus 

(Beamer)

Phytoplasmas, 

groups: 16SrII + 

16SrVII + 16SrXII

Longone et al., 

2011

Recilia dorsalis 

Motschulsky

BAMH + ‘Ca. Sulcia 

muelleri’ +16SrXI 

phytoplasma

Wangkeeree et 

al., 2012

Recilia sp. nr. vetus

BAMH + ‘Ca. Sulcia 

muelleri’ +16SrXI 

phytoplasma

Wangkeeree et 

al., 2012

Scaphoideus titanus 

Ball

‘Ca. Cardinium hertigii’ 

+ 16SrV phytoplasma

Marzorati et al., 

2006

Cacopsylla chinensis 

(Yang & Li)

Phytoplasmas, 

groups: 16SrII + 

16SrX

Liu et al., 2011

Cacopsylla 

melanoneura 

(Förster)

CLeu + ‘Ca. 

Phytoplasma mali’

Camerota et al., 

2012

Cacopsylla pyri L.

Phytoplasmas, 

groups: 16SrI + 

16SrXII 

16SrX + 16SrXII

16SrI + 16SrX

CLeu + ‘Ca. Carsonella 

ruddii’ + Arsenophonus 

+ Ralstonia + ‘Ca. 

Phytoplasma pyri’

Križanac et al., 

2010

Raddadi et al., 

2011 Camerota 

et al., 2012

Cacopsylla pyricola 

Förster

Arsenophonus + ‘Ca. 

Phytoplasma pyri’

Cooper et al., 

2017

Psyllidae

Diaphorina citri 

Kuwayama

‘Ca. Carsonella ruddii’ 

+ ‘Ca. Profftella 

aramtura’ + Wolbachia 

+ CLas

Ralstonia + CLas

Kruse et al., 

2017

Ramsey et al., 

2017

Kolora et al., 

2015

Bactericera cockerelli 

(Sulc)

Erwinia sp. + 

Wolbachia + 

Staphylococcus sp. + 

Enterococcus sp. + 

CLso

Kolora et al., 

2015

Sternorrhyncha

Triozidae

Bactericera trigonica 

Hodkinson

CLso + 

phytoplasmas, 

(group 16SrVI+ 

16SrI)

Swisher et al., 

2018

3

4

5

6
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Table 2 Symbiont-pathogen interactions reported in the vectors of phloem-limited plant pathogenic bacteria.

Insect Phytopathogen Symbiont Interaction Reference

Diaphorina citri CLas ‘Ca. Profftella armatura’ Upregulation of genes involved in 

biosynthesis of diaphorin polyketide.

Ramsey et al., 2015

Wolbachia Positive correlation Fagen et al., 2012

Hyalethes obsoletus 16SrXII phytoplasma Dyella-like bacterium (DLB) Reduction of phytoplasma-related 

symptoms in grapevine

Iasur-Kruh et al., 2018

Euscelidius variegatus 16SrV phytoplasma Asaia sp. Reduced phytoplasma acquisition in Asaia-

infected individuals

Gonella et al., 2018

Matsumuratettix 

hiroglyphicus

Recilia dorsalis

Recilia sp. nr. vetus

phytoplasmas Bacterium associated with M. 

hiroglyphicus (BAMH) (Nasuia)

BAHM suggested to be required for 

successful phytoplasma transmission

Wangkeeree et al., 2012

Dyctiophara europaea 16SrV phytoplasma Wolbachia Mutual exclusion Krstić et al., 2018
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