281 research outputs found

    A fast and easy one-step purification strategy for plant-made antibodies using Protein A magnetic beads

    Get PDF
    A major difficulty to reach commercial- scale production for plant-made antibodies is the complexity and cost of their purification from plant extracts. Here, using Protein A magnetic beads, two monoclonal antibodies are purified in a one-step procedure directly from non-clarified crude plant extracts. This technique provides significant savings in terms of resources, operation time, and equipment

    Multi Sensor Data Fusion Architectures for Air Traffic Control Applications

    Get PDF
    Nowadays, the radar is no longer the sole technology which is able to ensure the surveillance of air traffic. The extensive deployment of satellite systems and air-to-ground data links leads to the emergence of complementary means and techniques on which a great deal of research and experiments have been carried out over the past ten years. In such an environment, the sensor data processing, which is a key element in any Air Traffic Control (ATC) centre, has been continuously upgraded so as to follow the sensor technology evolution and in the meantime improves the quality in term of continuity, integrity and accuracy criteria. This book chapter proposes a comprehensive description of the state of art and the roadmap for the future of the multi sensor data fusion architectures and techniques in use in ATC centres. The first part of the chapter describes the background of ATC centres, while the second part of the chapter points out various data fusion techniques. Multi radar data processing architecture is analysed and a brief definition of internal core tracking algorithms is given as well as a comparative benchmark based on their respective advantages and drawbacks. The third part of the chapter focuses on the most recent evolution that leads from a Multi Radar Tracking System to a Multi Sensor Tracking System. The last part of the chapter deals with the sensor data processing that will be put in operation in the next ten years. The main challenge will be to provide the same level of services in both surface and air surveillance areas in order to offer: ⢠highly accurate air and surface situation awareness to air traffic controllers, ⢠situational awareness via Traffic Information System â Broadcast (TIS-B) services to pilots and vehicle drivers, and ⢠new air and surface safety, capacity and efficiency applications to airports and airlines

    Air Traffic Control Tracking Systems Performance Impacts with New Surveillance Technology Sensors

    Get PDF
    Nowadays, the radar is no longer the only technology able to ensure the surveillance of air traffic. The extensive deployment of satellite systems and air-to-ground data links lead to the emergence of other means and techniques on which a great deal of research and experiments have been carried out over the past ten years. In such an environment, the sensor data processing, which is a key element of an Air Traffic Control center, has been continuously upgraded so as to follow the sensor technology evolution and, at the same time, ensure a more efficient tracking continuity, integrity and accuracy. In this book chapter we propose to measure the impacts of the use of these new technology sensors in the tracking systems currently used for Air Traffic Control applications. The first part of the chapter describes the background of new-technology sensors that are currently used by sensor data processing systems. In addition, a brief definition of internal core tracking algorithms used in sensor data processing components, is given as well as a comparison between their respective advantages and drawbacks. The second part of the chapter focuses on the Multi Sensor Tracking System performance requirements. Investigation regarding the use of Automatic Dependent Surveillance â Broadcast reports and/or with a multi radars configuration, are conducted. The third part deals with the impacts of the âvirtual radarâ or âradar-likeâ approaches that can be used with ADS-B sensors, on the multi sensor tracking system performance. The fourth and last part of the chapter discusses the impacts of sensor data processing performance on sub-sequent safety nets functions that are: ⢠Short term conflict alerts (STCA), ⢠Minimum Safe Altitude Warnings (MSAW), and ⢠Area Proximity Warnings (APW)

    Targeting of proConA to the Plant Vacuole depends on its Nine Amino-acid C-terminal Propeptide

    Get PDF
    Concanavalin A (ConA) is a well characterized and extensively used lectin accumulated in the protein bodies of jack bean cotyledons. ConA is synthesized as an inactive precursor proConA. The maturation of inactive proConA into biologically active ConA is a complex process including the removal of an internal glycopeptide and a C-terminal propeptide (CTPP), followed by a head-to-tail ligation of the two largest polypeptides. The cDNA encoding proConA was cloned and expressed in tobacco BY-2 cells. ProConA was slowly transported to the vacuole where its maturation into ConA was similar to that in jack bean cotyledons, apart from an incomplete final ligation. To investigate the role of the nine amino acid CTPP, a truncated form lacking the propeptide (proConAΔ9) was expressed in BY-2 cells. In contrast to proConA, proConAΔ9 was rapidly chased out of the endoplasmic reticulum (ER) and secreted into the culture medium. The CTPP was then fused to the C-terminal end of a secreted form of green fluorescent protein (secGFP). When expressed in tobacco BY-2 cells and leaf protoplasts, the chimaeric protein was located in the vacuole whereas secGFP was located in the culture medium and in the vacuole. Altogether, our results show we have isolated a new C-terminal vacuolar sorting determinan

    Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans

    Get PDF
    Rabies kills many people throughout the developing world every year. The murine monoclonal antibody (mAb) 62-71-3 was recently identified for its potential application in rabies postexposure prophylaxis (PEP). The purpose here was to establish a plant-based production system for a chimeric mouse-human version of mAb 62-71-3, to characterize the recombinant antibody and investigate at a molecular level its interaction with rabies virus glycoprotein. Chimeric 62-71-3 was successfully expressed in Nicotiana benthamiana. Glycosylation was analyzed by mass spectroscopy; functionality was confirmed by antigen ELISA, as well as rabies and pseudotype virus neutralization. Epitope characterization was performed using pseudotype virus expressing mutagenized rabies glycoproteins. Purified mAb demonstrated potent viral neutralization at 500 IU/mg. A critical role for antigenic site I of the glycoprotein, as well as for two specific amino acid residues (K226 and G229) within site I, was identified with regard to mAb 62-71-3 neutralization. Pseudotype viruses expressing glycoprotein from lyssaviruses known not to be neutralized by this antibody were the controls. The results provide the molecular rationale for developing 62-71-3 mAb for rabies PEP; they also establish the basis for developing an inexpensive plant-based antibody product to benefit low-income families in developing countries.—Both, L., van Dolleweerd, C., Wright, E., Banyard, A. C., Bulmer-Thomas, B., Selden, D., Altmann, F., Fooks, A. R., Ma, J. K.-C. Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans

    Evolution of Plant-Made Pharmaceuticals

    Get PDF
    The science and policy of pharmaceuticals produced and/or delivered by plants has evolved over the past twenty-one years from a backyard remedy to regulated, purified products. After seemingly frozen at Phase I human clinical trials with six orally delivered plant-made vaccines not progressing past this stage over seven years, plant-made pharmaceuticals have made a breakthrough with several purified plant-based products advancing to Phase II trials and beyond. Though fraught with the usual difficulties of pharmaceutical development, pharmaceuticals made by plants have achieved pertinent milestones albeit slowly compared to other pharmaceutical production systems and are now at the cusp of reaching the consumer. Though the current economic climate begs for cautious investment as opposed to trail blazing, it is perhaps a good time to look to the future of plant-made pharmaceutical technology to assist in planning for future developments in order not to slow this technology’s momentum. To encourage continued progress, we highlight the advances made so far by this technology, particularly the change in paradigms, comparing developmental timelines, and summarizing the current status and future possibilities of plant-made pharmaceuticals

    The Expression of a Xylanase Targeted to ER-Protein Bodies Provides a Simple Strategy to Produce Active Insoluble Enzyme Polymers in Tobacco Plants

    Get PDF
    Background Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera) of the maize storage protein γ-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs). Methodology/Principal Findings Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. Conclusion/Significance In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low-cost bioreactors for industrial purposes.This work was mainly supported by ERA Biotech (www.erabiotech.com). Additional support was supplied by grant SGR 2009/703 funded by the Generalitat de Catalunya (www10.gencat.net) and grants CDS2007/00036 of Consolider Ingenio program and TRA 2009/0124 of TRACE program funded by Ministerio de Ciencia e Inovación (MICINN, www.micinn.es). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe
    corecore