67 research outputs found

    Crustal recycling by subduction erosion in the central Mexican Volcanic Belt

    Get PDF
    Recycling of upper plate crust in subduction zones, or ‘subduction erosion’, is a major mechanism of crustal destruction at convergent margins. However, assessing the impact of eroded crust on arc magmas is difficult owing to the compositional similarity between the eroded crust, trench sediment and arc crustal basement that may all contribute to arc magma formation. Here we compare Sr–Nd–Pb–Hf and trace element data of crustal input material to Sr–Nd–Pb–Hf–He–O isotope chemistry of a well-characterized series of olivine-phyric, high-Mg# basalts to dacites in the central Mexican Volcanic Belt (MVB). Basaltic to andesitic magmas crystallize high-Ni olivines that have high mantle-like 3He/4He = 7–8 Ra and high crustal δ18Omelt = +6.3–8.5‰ implying their host magmas to be near-primary melts from a mantle infiltrated by slab-derived crustal components. Remarkably, their Hf–Nd isotope and Nd/Hf trace element systematics rule out the trench sediment as the recycled crust end member, and imply that the coastal and offshore granodiorites are the dominant recycled crust component. Sr–Nd–Pb–Hf isotope modeling shows that the granodiorites control the highly to moderately incompatible elements in the calc-alkaline arc magmas, together with lesser additions of Pb- and Sr-rich fluids from subducted mid-oceanic ridge basalt (MORB)-type altered oceanic crust (AOC). Nd–Hf mass balance suggests that the granodiorite exceeds the flux of the trench sediment by at least 9–10 times, corresponding to a flux of ⩾79–88 km3/km/Myr into the subduction zone. At an estimated thickness of 1500–1700 m, the granodiorite may buoyantly rise as bulk ‘slab diapirs’ into the mantle melt region and impose its trace element signature (e.g., Th/La, Nb/Ta) on the prevalent calc-alkaline arc magmas. Deep slab melting and local recycling of other slab components such as oceanic seamounts further diversify the MVB magmas by producing rare, strongly fractionated high-La magmas and a minor population of high-Nb magmas, respectively. Overall, the central MVB magmas inherit their striking geochemical diversity principally from the slab, thus emphasizing the importance of continental crust recycling in modern solid Earth relative to its new formation in modern subduction zones

    Binding Of Adenine Nucleotides To The F1-inhibitor Protein Complex Of Bovine Heart Submitochondrial Particles

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The binding of ATP radiolabeled in the adenine ring or in the γ- or α-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 ± 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 μM ATP, and low magnesium concentrations (<0.1 μM MgATP), it was possible to observe that 3.5 mol of [γ-32P] ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [γ-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 μM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [γ-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [α-32P] ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme. The results indicate that one of the first events that occurs during ATP hydrolysis by the F1-inhibitor protein complex is the binding of two to three adenine nucleotides to sites that apparently are not hydrolytic. In addition, it was found that in the complex, the affinity of two to three of its adenine nucleotide binding sites is higher than in particulate enzymes devoid of the inhibitor protein. © 1992 American Chemical Society.3125578457902013/02203-6; FAPESP; São Paulo Research Foundation; 2014/00372-8; FAPESP; São Paulo Research FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt

    No full text
    Geochemical studies of Plio-Quaternary volcanic rocks from the Valle de Bravo-Zitacuaro volcanic field (VBZ) in central Mexico indicate that slab melting plays a key role in the petrogenesis of the Trans-Mexican Volcanic Belt. Rocks from the VBZ are typical arc-related high-Mg andesites, but two different rock suites with distinct trace element patterns and isotopic compositions erupted concurrently in the area, with a trace element character that is also distinct from that of other Mexican volcanoes. The geochemical differences between the VBZ suites cannot be explained by simple crystal fractionation and/or crustal assimilation of a common primitive magma, but can be reconciled by the participation of different proportions of melts derived from the subducted basalt and sediments interacting with the mantle wedge. Sr/Y and Sr/Pb ratios of the VBZ rocks correlate inversely with Pb and Sr isotopic compositions, indicating that the Sr and Pb budgets are strongly controlled by melt additions from the subducted slab. In contrast, an inverse correlation between Pb(Th)/Nd and Nd-143/Nd-144 ratios, which extend to lower isotopic values than those for Pacific mid-ocean ridge basalts, indicates the participation of an enriched mantle wedge that is similar to the source of Mexican intraplate basalts. In addition, a systematic decrease in middle and heavy rare earth concentrations and Nb/Ta ratios with increasing SiO2 contents in the VBZ rocks is best explained if these elements are mobilized to some extent in the subduction flux, and suggests that slab partial fusion occurred under garnet amphibolite-facies conditions.Earth and Planetary Science

    Formation of hybrid arc andesites beneath thick continental crust

    No full text
    Andesite magmatism at convergent margins is essential for the differentiation of silicate Earth, but no consensus exists as to andesite petrogenesis. Models proposing origin of primary andesite melts from mantle and/or slab materials remain in deadlock with the seemingly irrefutable petrographic and chemical evidence for andesite formation through mixing of basaltic mantle melts with silicic components from the overlying crust. Here we use <sup>3</sup>He/<sup>4</sup>He ratios of high-Ni olivines to demonstrate the mantle origin of basaltic to andesitic arc magmas in the central Mexican Volcanic Belt (MVB) that is constructed on ~ 50 km thick continental crust. We propose that the central MVB arc magmas are hybrids of high-Mg# > 70 basaltic and dacitic initial mantle melts which were produced by melting of a peridotite subarc mantle interspersed with silica-deficient and silica-excess pyroxenite veins. These veins formed by infiltration of reactive silicic components from the subducting slab. Partial melts from pyroxenites, and minor component melts from peridotite, mix in variable proportions to produce high-Mg# basaltic, andesitic and dacitic magmas. Moderate fractional crystallization and recharge melt mixing in the overlying crust produces then the lower-Mg# magmas erupted. Our model accounts for the contrast between the arc-typical SiO<sub>2</sub> variability at a given Mg# and the strong correlation between major element oxides SiO<sub>2</sub>, MgO and FeO which is not reproduced by mantle–crust mixing models. Our data further indicate that viscous high-silica mantle magmas may preferentially be emplaced as intrusive silicic plutonic rocks in the crust rather than erupt. Ultimately, our results imply a stronger turnover of slab and mantle materials in subduction zones with a negligible, or lesser dilution, by materials from the overlying crust
    • …
    corecore