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 34 

Abstract 35 

Recycling of upper plate crust in subduction zones, or 'subduction erosion', is a major 36 

mechanism of crustal destruction at convergent margins. However, assessing the impact 37 

of eroded crust on arc magmas is difficult owing to the compositional similarity between 38 

the eroded crust, trench sediment and arc crustal basement that may all contribute to arc 39 

magma formation. Here we compare Sr-Nd-Pb-Hf and trace element data of crustal 40 

input material to Sr-Nd-Pb-Hf-He-O isotope chemistry of a well-characterized series of 41 

olivine-phyric, high-Mg# basalts to dacites in the central Mexican Volcanic Belt (MVB). 42 

Basaltic to andesitic magmas crystallize high-Ni olivines that have high mantle-like 43 

3He/4He = 7-8 Ra and high crustal δ18Omelt = +6.3-8.5‰ implying their host magmas to be 44 

near-primary melts from a mantle infiltrated by slab-derived crustal components. 45 

Remarkably, their Hf-Nd isotope and Nd/Hf trace element systematics rule out the 46 

trench sediment as the recycled crust end member, and imply that the coastal and 47 

offshore granodiorites are the dominant recycled crust component. Sr-Nd-Pb-Hf isotope 48 

modeling shows that the granodiorites control the highly to moderately incompatible 49 

elements in the calc-alkaline arc magmas, together with lesser additions of Pb- and Sr-50 

rich fluids from subducted mid-oceanic ridge basalt (MORB)-type altered oceanic crust 51 

(AOC). Nd-Hf mass balance suggests that the granodiorite exceeds the flux of the trench 52 

sediment by at least 9-10 times, corresponding to a flux of ≥79-88 km3/km/Myr into the 53 

subduction zone. At an estimated thickness of 1500-1700 m, the granodiorite may 54 

buoyantly rise as bulk 'slab diapirs' into the mantle melt region and impose its trace 55 

element signature (e.g. Th/La, Nb/Ta) on the prevalent calc-alkaline arc magmas. Deep 56 

slab melting and local recycling of other slab components such as oceanic seamounts 57 

further diversify the MVB magmas by producing rare, strongly fractionated high-La 58 

magmas and a minor population of high-Nb magmas, respectively. Overall, the central 59 

MVB magmas inherit their striking geochemical diversity principally from the slab, thus 60 

emphasizing the importance of continental crust recycling in modern solid Earth relative 61 

to its new formation in modern subduction zones. 62 

1. INTRODUCTION 63 

Subduction zone magmas share remarkable compositional similarities with the 64 

continental crust. This has triggered a longstanding and controversial debate regarding 65 

whether the continental crust was extracted from the Earth's mantle by processes similar 66 

to those of modern convergent margins (e.g. Harrison, 2009; Plank, 2004; Stern, 2011; 67 

Taylor, 1967). A pivotal question in this debate is the extent to which subduction 68 
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processing can create the typical fractionated trace element signature of the continental 69 

crust, or whether this signature is mostly inherited through perpetual recycling of 70 

continental crust in subduction zones (e.g. Plank, 2004; Rudnick, 1995). Continental crust 71 

is recycled in subduction zones by means of the oceanic sediment subducted at the 72 

trenches ('trench sediment') and by subduction erosion of the upper plate crust (Clift 73 

and Vannucchi, 2004; Huene and Scholl, 1991). Trench sediment accumulates by surface 74 

erosion of the continental crust and resembles average upper continental crust (Plank, 75 

2004; Plank and Langmuir, 1993). Eroded crust is continental crust that is mechanically 76 

removed by the subducting slab from forearc basement either by frontal or basal tectonic 77 

erosion (Huene et al., 2004; Huene and Scholl, 1991). 78 

Trench sediment recycling has been deduced by the strong compositional links 79 

between arc magmas and conjugate trench sediments (e.g. Kay, 1980; Kelemen et al., 80 

2003; Morris et al., 2002; Morris et al., 1990; Plank, 2004; Plank and Langmuir, 1993), and 81 

unequivocally confirmed by the detection of cosmogenic 10Be in young arc lavas (Morris 82 

et al., 2002; Tera et al., 1986). In contrast, subduction erosion was first recognized from 83 

geological observations. For example, uplifted igneous plutonic roots of older arcs may 84 

be exposed trenchward to modern arcs which suggests a landward retreat of the trench 85 

and forearc crustal removal (Huene and Scholl, 1991; Schaaf et al., 1995). Missing crust is 86 

also indicated by vertical fore-arc subsidence without horizontal extension or depression 87 

(Huene and Scholl, 1991; Ranero and Huene, 2000). The intensity of subduction erosion 88 

may vary considerably through time and among different arc-trench systems (Clift and 89 

Vannucchi, 2004; Stern, 2011). On a global scale, mass balance calculations show that 90 

subduction erosion accounts for about half (~44-50%) of the crust recycled in subduction 91 

zones relative to the trench sediment (∼42-56%) (Clift et al., 2009; Scholl and Huene, 92 

2009). Regionally, eroded crust may even exceed the mass of trench sediment by up to a 93 

factor of 10 (Vannucchi et al., 2003). Clearly, in view of these numbers, the recycled 94 

eroded crust must leave a chemical imprint on the arc that rivals the influence of the 95 

recycled trench sediment. 96 

Confirming the recycling of eroded crust in the compositions of arc magmas, 97 

however, is a major challenge. The eroded crust mingles with the incoming trench 98 

sediment and subducted igneous oceanic basement (AOC, altered oceanic crust), and re-99 

emerges in volcanic arcs together with material from the mantle, and possibly 100 

contaminated by the arc's crustal basement. These components must then be 101 

distinguished from each other in arc magmas, whereby the eroded crust is similar to 102 

trench sediment and arc basement. No unique tracer exists, such as 10Be for oceanic 103 
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trench sediment. To add complexity, basal crust from the underside of the upper plate is 104 

not accessible, which forestalls direct comparison to arc compositions. Nevertheless, 105 

from comprehensive Sr-Nd-Pb-B isotope and trace element studies of arc magmas, 106 

evidence for the presence of fore-arc eroded crust has begun to accumulate (e.g. Goss 107 

and Kay, 2006; Goss et al., 2013; Holm et al., 2014; Kay et al., 2005; Risse et al., 2013; 108 

Tonarini et al., 2011). The common factor of these studies is that they integrate geological 109 

and geochemical observations that allow the detection of compositional mismatch 110 

between arc chemistry and trench input from the subducted slab that may be reconciled 111 

by crust removed from the fore-arc regions. 112 

In the global spectrum of arc magmas, the Mexican margin is a prime setting for 113 

tracing the eroded crust in volcanic arcs. First, there is strong evidence for long-term 114 

crustal erosion along the Mexican Trench indicated by trench retreat and fore-arc uplift 115 

(Clift and Vannucchi, 2004), and by large volumes of missing Mesozoic and Cenozoic 116 

crust along the coast (Ducea et al., 2004; Keppie et al., 2012; Morán-Zenteno et al., 1996; 117 

Schaaf et al., 1995). Second, the subducted crustal materials - trench sediment, AOC, 118 

eroded crust – are obtainable from drill sites at the trench and offshore continental slope 119 

as well as from coastal outcrops (exposed Acapulco intrusion, Hernández-Pineda et al., 120 

2011; Watkins and Moore, 1981). Since these crustal materials have distinct 121 

compositions, they should be traceable in the arc magmas. Here we report the results of 122 

comprehensive comparison between Sr-Nd-Pb-Hf-O-He isotope and trace element data 123 

of olivine-bearing arc magmas from the central Mexican Volcanic Belt (MVB) and Sr-Nd-124 

Pb-Hf isotope and trace elements of relevant crustal input materials from the subducting 125 

and overlying slab. Our data imply that crust recycled by subduction erosion controls 126 

much of the chemistry of the arc magmas erupted in the central MVB. 127 

2. GEOLOGICAL SETTING 128 

The Mexican Volcanic Belt is an active Pliocene-Quaternary volcanic arc that is related 129 

to the subduction of the Cocos and Rivera plates along the Middle American Trench 130 

(Figure 1) (e.g. Gómez-Tuena et al., 2007b). The trench runs oblique to the arc volcanic 131 

front at an angle of ~17°, because the slab dip decreases eastward and the arc-trench gap 132 

widens. In the central MVB, the slab subducts horizontally beneath the forearc and the 133 

arc-trench gap measures ∼360 km (Pardo and Suarez, 1995; Perez-Campos et al., 2008). 134 

The study area in central Mexico comprises the monogenetic Sierra Chichinautzin 135 

Volcanic Field that is flanked by the composite volcanoes Nevado de Toluca (west) and 136 

Popocatepetl (east) (Figure 1, 2). The volcanoes are constructed on a ~45 km thick sialic 137 

crust of Proterozoic granulites and Mesozoic metapelites, granites and limestones (e.g. 138 
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Ortega-Gutiérrez et al., 2012). An extensional crustal stress regime facilitates magma 139 

ascent, and mafic and high-Mg# olivine-phyric basalts and andesites are common 140 

(Gómez-Tuena et al., 2007b; Schaaf et al., 2005; Wallace and Carmichael, 1999). 141 

Magma compositions in the central MVB range from basalt to dacites which display 142 

considerable diversity in trace elements (e.g. Cai et al., 2014; LaGatta, 2003, and 143 

references therein; Martinez-Serrano et al., 2004; Schaaf et al., 2005; Siebe et al., 2004a; 144 

Straub et al., 2013a; Straub et al., 2014; Wallace and Carmichael, 1999). For petrogenetic 145 

studies it was useful to distinguish between a 'basaltic' (olivine-normative) and 146 

'andesitic' (quartz-normative) group, respectively (e.g. Straub et al., 2011b; 2013a; 2014). 147 

For the discussion of recycling processes, however, we prefer a division based on the 148 

source-sensitive incompatible trace elements (Figure 3). In trace element space, three 149 

groups with basaltic and andesitic compositions can be distinguished (see also 150 

Appendix A, Figure 1a). The first and far most abundant group (estimated >95 vol% of 151 

erupted magmas) are calk-alkaline basalts to dacites (50-67 wt% SiO2) which construct 152 

the voluminous (several 100 km3) composite volcanoes and most of the small-volume (≤1 153 

km3) monogenetic cones. Calc-alkaline magmas combine low Nb =  4-14 ppm 154 

abundances with arc-typical strong enrichments of large-ion lithophile elements (LILE) 155 

relative to the rare earth elements (REE) and high-field-strength elements (HFSE). The 156 

second group ('high-La') consists of light REE (LREE)-enriched basalts to basaltic 157 

andesites that have strongly fractionated trace element patterns with strong enrichments 158 

in K2O and LREE, relative depletions in Zr-Hf and steep heavy REE (HREE) patterns. 159 

'High-La' magmas were first described by Gomez-Tuena et al. (2007a) in the Valle de 160 

Bravo west of Nevado de Toluca. In the central MVB, only a few high-La magmas erupt 161 

from small, monogenetic volcanoes but these magmas are more common in western 162 

Mexico (Gomez-Tuena et al., 2011). The third group consists of Nb-rich (>17-36 ppm), 163 

mildly alkaline basalts to basaltic andesites (49-57 wt% SiO2). Nb-rich magmas are 164 

enriched in LILE, REE and HFSE, and their trace element pattern resemble those of 165 

enriched intraplate basalts (LaGatta, 2003; Schaaf et al., 2005; Straub et al., 2013a; Wallace 166 

and Carmichael, 1999). Nb-rich magmas are ubiquitous in the rear-arc region of the 167 

MVB, but are rare along the arc volcanic front (e.g. Díaz-Bravo et al., 2014; Gómez-Tuena 168 

et al., 2007b; Luhr, 1997).  169 

In the central MVB, Nb-rich magmas erupt from a small, likely coeval group (ca. 1600-170 

1800 year ago, Siebe, 2000; Siebe et al., 2004b; Straub et al., 2013b) of monogenetic 171 

volcanoes in the center of the Sierra Chichinautzin, located halfway between 172 

Popocatepetl and Nevada de Toluca (Figure 2) (e.g. Straub et al., 2013b; Wallace and 173 
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Carmichael, 1999). These Nb-rich magmas are closely associated with the calc-alkaline 174 

magmas, erupting from vents only a few kilometers and a few thousands year apart, 175 

and even from the same volcano (e.g. Suchiooc, Schaaf et al., 2005; Siebe et al., 2004a; 176 

Straub et al., 2013a; Straub et al., 2014). In our sample set, the Nb-rich magmas are over-177 

represented, because they were the target of a more detailed study (Straub et al., 2013a, 178 

2013b). 179 

3. ARC MAGMA PETROGENESIS IN THE CENTRAL MVB 180 

The impact of slab contributions (such as slab fluids, slab partial melts and more 181 

recently 'slab diapirs', hereafter summarily referred to as 'slab components') on arc 182 

magmas and its consequences for arc petrogenesis and subduction cycling are at the core 183 

of arc research (e.g. Gomez-Tuena et al., 2014; Hacker et al., 2011; Plank, 2004). This 184 

question is also intensely debated in the central MVB, where much recent progress was 185 

made, and for which a short summary is provided here. 186 

The central MVB is constructed on thick continental basement and consequently many 187 

studies propose that andesites and dacites evolve from primary basaltic mantle melt by 188 

crustal processing (fractional crystallization, crustal assimilation) (e.g. Agustín-Flores et 189 

al., 2011; Marquez et al., 1999; Verma, 1999a). However, in recent years evidence has 190 

accumulated from several comprehensive petrologic and geochemical studies that the 191 

entire range of central MVB basaltic to andesitic (and even dacitic and ryolitic) magmas 192 

are near-primary melts from a subduction-modified mantle that pass the crustal 193 

basement nearly unchanged (Gomez-Tuena et al., 2007a; Gómez-Tuena et al., 2008; 194 

Straub et al., 2011a; Straub et al., 2013a; Straub et al., 2008). In these models high-Ni 195 

olivines with up to 5400 ppm Ni play a key role (Appendix A, Figures 1b,c). These 196 

olivines crystallize from basaltic and andesitic magmas and have high 3He/4He ratios of 197 

7-8 Ra which confirms that their host magmas originate in upper mantle. Moreover, the 198 

high Ni concentrations in olivine suggests that these magmas are partial melts of 199 

secondary olivine-free pyroxenite segregations in the mantle wedge (Straub et al., 200 

2011b). Such segregations formed following the infiltration of silicic components from 201 

slab. They melt preferentially relative to the surrounding peridotite in an upwelling 202 

mantle and produce a broader range of primary basaltic to dacitic melts that mix 203 

variably during ascent to form andesites (Straub et al., 2011a; Straub et al., 2013a; Straub 204 

et al., 2008). A major implication of this 'pyroxenite model' is that the central MVB 205 

magmas are principally mixtures of slab and mantle materials that underwent little, or 206 

negligible, processing in the shallow crust. Thus, the budget of their highly incompatible 207 
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trace elements must be strongly controlled by recycled slab materials with little 208 

influence of the subarc mantle. 209 

This inference has to date been confirmed by follow-up studies which provided 210 

additional insights (e.g. Straub et al., 2013a; 2014). First, the central MVB 'background 211 

mantle' (mantle without subduction influence) is highly depleted through serial 212 

('repetitive') melting that is triggered by the continuous hydrous flux from slab since the 213 

arc became active in Pliocene. Thus, the mantle wedge is very susceptible to be 214 

chemically overprinted by slab additions (2013a; Straub et al., 2008; 2014). The effect of 215 

only a few percent melt extraction on the pre-subduction mantle is illustrated in 216 

Figure 3, by means of modeling the 'Old Texcal Flow'. This is a monogenetic basalt flow 217 

that shows the least slab influence in central Mexico [e.g. lowest SiO2 ∼49 wt%, highest 218 

TiO2 ∼2 wt% and lowest Ni in olivines that are only slightly higher than the Ni of 219 

olivines in mid-ocean ridge basalts (MORB)], and is considered as best proxy to a melt 220 

from the original mantle wedge (Straub et al., 2013a). In incompatible trace elements, the 221 

'Old Texcal Flow' resembles a ∼3-4% partial melt of the average primitive mantle (or 222 

'pyrolite') as given by McDonough and Sun (1995) [see Straub (2013a)]. However, the 223 

'Old Texcal Flow' has no end member character in trace element space (Figure 3). While 224 

the 'Old Texcal Flow' is per definition a high-Nb basalt (Nb>17 ppm), it has the lowest 225 

Nb abundances of this group (Nb=17-19 ppm) and is largely intermediate to calc-226 

alkaline and high-Nb series in other incompatible trace elements (Straub et al., 2014). 227 

Therefore, primitive mantle cannot be the prevalent background mantle as it would 228 

produce melts that are too enriched in HFSE and light REE for the calc-alkaline series. 229 

However, a residual of primitive mantle, produced after only >3-10% melt loss, is highly 230 

depleted incompatible elements, and can easily be modified by slab additions (Straub et 231 

al., 2014). As discussed previously, in the central MVB, most of the incompatible trace 232 

elements (including elements Sr, Nd, Pb and Hf which are associated with isotope 233 

tracers) are either exclusively, or substantially contributed from the slab (Straub et al., 234 

2013a; 2014), excepting only Ti and HREE (Ho-Lu). 235 

Second, regardless of the extent of depletion by melting, the Ti and HREE (Ho-Lu) are 236 

always controlled by the mantle.  In other words, calc-alkaline and high-Nb magmas 237 

could contain larger amount of slab material without displaying a garnet signature. 238 

Model calculations for REE that use the most recent partitioning data for fluid and/or 239 

melt release from slab (Klimm et al., 2008; Skora and Blundy, 2010) show that absorption 240 

of up to 30% of slab material would not increasing Ho/Lu of the metasomatized mantle 241 

above MORB levels (Straub et al., 2013a; 2014). This amount agrees well with the 242 
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'pyroxenite model' that requires a minimum of 15-18% (and likely more) of a silicic slab 243 

component in the source in order to convert peridotite to olivine-free pryoxenite (2011b; 244 

Straub et al., 2008). 245 

In summary, there is a confluence of evidence for strong slab contributions to the 246 

mantle source that may make up several tens of percent of the erupted magmas (2014; 247 

Gomez-Tuena et al., 2007a; Straub et al., 2011b; 2013a; 2014). At such proportions, the 248 

slab components must control the highly incompatible trace element budgets of the 249 

magmas. Moreover, slab components may range from strongly fractionated varieties to 250 

components that equally mobilize fluid-mobile LILE, HFSE and LREE. Such diversity - 251 

that likely represents heterogeneous slab material rather than an extreme range of 252 

fractionation - would be ideal to produce the trace element diversity of calc-alkaline, 253 

high-La and Nb-rich series that are so closely associated in time and space. Thus, the 254 

central MVB magmas are not only suitable for more detailed investigations of the impact 255 

of the slab flux on arc chemistry, but such studies are also a vital test of the prevailing 256 

petrogenetic models. 257 

4. SAMPLES AND DATA FOR THIS STUDY  258 

Here we present new δ18O data (n=51) for olivine phenocrysts, together with new Hf 259 

and Pb isotope ratios of representative bulk rock samples (n= 37 samples). Most of these 260 

samples have previously been analyzed for major and trace element abundances, Sr and 261 

Nd isotope ratios, and the olivines have been analyzed for composition and 3He/4He 262 

(2011b; 2013a; Straub et al., 2008; 2014). In addition, 22 new volcanic rock samples were 263 

analyzed for major and trace elements and Sr-Nd-Pb-Hf isotopes, as well as for major 264 

element oxide and Ni concentrations of olivines of six samples (Appendix B Tables 1-5). 265 

Furthermore, we analyzed up to 22 selected samples of crustal material (xenoliths, 266 

basement) for major and trace elements and Sr-Nd-Pb-Hf isotope data (Appendix B 267 

Tables 6-9) in order to complement the published data of crustal rocks from the 268 

continental basement and offshore central Mexico (Figure 1). All new and previously 269 

published data are summarized in Appendix B Table 10. 270 

4.1. Central Mexican arc volcanic rocks 271 

Sample locations for volcanic rocks are shown in Figure 2. Calc-alkaline samples are 272 

from many monogenetic volcanoes and two composite volcanoes, Popocatepetl and 273 

Toluca. The three high-La basalts and basaltic andesites are from monogenetic volcanoes 274 

Yecahuazac Cone, Tuxtepec and St. Cruz. The Nb-rich series are from monogenetic 275 

volcanoes Suchiooc, Chichinautzin and Texcal Flow.  276 
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4.2. Crustal materials 277 

Crustal materials used in this study include (i) continental crustal basement on which 278 

the MVB is constructed, (ii) coastal and offshore crustal basement, and (iii) the 279 

terrigenous and pelagic sediment and AOC of the Cocos and Pacific plates (Figure 1). 280 

4.2.1. Continental crustal basement 281 

We obtained new Hf isotope data on crustal xenoliths from Chalcatzingo and Valle de 282 

Santiago that have previously characterized for Sr-Nd-Pb isotopes and trace elements by 283 

Gómez-Tuena et al. (2008, Chalcatzingo) and Ortega-Gutiérrez et al. (2014, Valle de 284 

Santiago). Additional major and trace element data and Sr-Nd-Pb isotope ratios of 285 

outcropping crust and crustal xenoliths from within and south of the Mexican Volcanic 286 

Belt were compiled from Schaaf et al. (2005, Popocatepetl), Gomez-Tuena et al. (2003; 287 

2008, Teziutlán (Puebla) and Chalcatzingo), Martinez-Serrano et al. (2004, Toluca), 288 

Ortega-Gutiérrez et al. (2012; 2014, Puente Negro and Valle Santiago; 2011), and Pérez-289 

Gutiérrez et al. (2009, Xolapa terrane). 290 

4.2.2. Coastal and offshore continental crust  291 

We obtained coastal and offshore continental crust as proxies to crust recycled by 292 

crustal erosion. The coastal samples are from the Eocene Acapulco intrusion that is now 293 

exposed at the Pacific coast south of the central MVB (Hernández-Pineda et al., 2011). 294 

Offshore samples are from DSDP Leg 66 drill sites that recovered biotite gneiss (Site 489) 295 

and granodiorite (Site 493) basement southeast of Acapulco (Figure 1). We analyzed Hf 296 

isotopes of the Acapulco intrusion [all other data are from Hernández-Pineda et al. 297 

(2011)] and major and trace element abundances and Sr-Nd-Pb-Hf isotope ratios of the 298 

DSDP basement samples (Appendix B Tables 7-9). 299 

4.2.3. Cocos and Pacific Plates 300 

The crustal compositions of the incoming Cocos Plate are either AOC or oceanic 301 

sediment. 302 

4.2.3.1. Pelagic and terrigenous sediment 303 

There are two types of sediment subducted at the trench: (i) the pelagic sediment that 304 

accumulated on the Cocos plate, and the (ii) terrigenous (hemipelagic) sediment from 305 

the North American plate which covers the continental slope, trench and the near-trench 306 

region of the Cocos plate (Watkins and Moore, 1981). The terrigenous sediment reaches 307 

a minimum thickness of 625 m on the continental slope, and is still thicker (105 m) than 308 

the pelagic sediment (65 m) at the trench Site 487 on the Cocos plate (Figure 1, Watkins 309 

et al., 1981). Both sediment types were analyzed for major and trace element abundances 310 
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and Sr-Nd-Pb-Hf isotopes by Verma (1999b), LaGatta (2003) and Cai et al. (2014), mainly 311 

with samples from DSDP Site 487 on the incoming Cocos plate, supplemented by 312 

samples from DSDP Site 488 at the toe of the upper plate continental slope, and from 313 

piston cores near the East Pacific Rise (Figure 1). A bulk trench sediment has been 314 

calculated (Cai et al., 2014; Plank, 2014). 315 

While not all data were obtained at each site, the two sediment types have clear 316 

commonalities and differences. Both types have similar 143Nd/144Nd ∼0.5125 and 87Sr/86Sr 317 

∼ 0.7085, but the pelagic sediment has higher 176Hf/177Hf (∼0.28294 vs. 0.28278) and Nd/Hf 318 

(∼20 vs 8) than the terrigenous sediment, and is less radiogenic in Pb isotopes (e.g. 319 

206Pb/204Pb 18.84 vs 18.52) (Cai et al., 2014; LaGatta, 2003). These differences allow these 320 

two lithologies to be traced through the Mexican margin given the sensitivity of arcs 321 

towards trench sediment (e.g. Carpentier et al., 2008; Elliott et al., 1997; Plank and 322 

Langmuir, 1993).   323 

4.2.3.2. Subducting igneous oceanic crust (AOC) 324 

The subducted AOC has been characterized for trace elements and Sr-Nd-Pb-Hf 325 

isotopes using the Miocene basalt basement drilled at DSDP Site 487 on the incoming 326 

Cocos Plate (Cai et al., 2014; Verma, 1999b). These data and additional Sr-Nd-Pb-Hf 327 

isotope analyses of two Site 487 basement samples (Appendix B Table 7) show that the 328 

Site 487 basement resembles depleted zero-age mid-ocean ridge basalts of the East 329 

Pacific Rise (PetDB, 2011). Nevertheless, the AOC now beneath the central MVB is about 330 

∼5-6 million years older than at the trench, based on the current convergence rate of 47 331 

km/Ma and the arc-trench gap of 360 km (e.g. Manea and Manea, 2011). In order to 332 

preclude the possibility of a significant temporal change of the AOC, we analyzed 9 333 

basaltic glasses spanning 10-72 Ma from the western flank of the East Pacific Rise 334 

(Pacific Plate), assuming that the crust on both flanks of the East Pacific Rise represents 335 

the upwelling mantle. Sample locations are shown in Figure 1 and include DSDP Sites 336 

163, 469, 470 and 472, ODP Sites 1217A, 1243B and IODP Sites 1332, 1333 and 1334. Sr-337 

Nd-Pb-Hf isotope ratios for all sites, and major element oxide abundances for three sites 338 

are given in Appendix Tables 8 and 9. The trace element composition of these MORB 339 

glasses are from Brandl et al. (2011; 2015). 340 

5. ANALYTICAL METHODS 341 

The majority of the Hf isotope ratios (n=37) were obtained at the Institute for Earth 342 

Sciences (IES), Academia Sinica, Taipei, Taiwan on a Nu Plasma using the chemical Hf 343 

separation technique after Lee et al. (1999). Additional Sr-Nd-Pb-Hf isotope ratios of 344 
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MVB lavas, crustal material and MORB glasses were obtained at Lamont using chemical 345 

separation procedures developed by Cai et al. (2014). All trace element data of bulk 346 

rocks were obtained by solution ICP-MS methods at the Centro de Geociencias (CGEO), 347 

Juriquilla/Qro., Universidad Nacional Autónoma de México, Mexico. Major element 348 

oxides were obtained by solution ICP-OES at Lamont. Oxygen isotope data of olivine 349 

were obtained at the University of Oregon at Eugene. Olivine major and trace element 350 

analyses and major element analyses of MORB glasses were performed at the American 351 

Museum of Natural History in New York/USA. Details of analytical methods are given 352 

in Appendix B together with the new data (Appendix B Tables 1-9). 353 

6. RESULTS 354 

6.1. O isotopes of the central MVB magmas 355 

The δ18O of olivines range from 5.3 to 6.6‰, which corresponds to δ18Omelt = 6.3=8.4‰ 356 

of their basaltic and andesite equilibrium melts (Figure 4) (fractionation-correction after, 357 

Bindeman, 2008). The δ18Ooliv extend to higher values than those reported by Johnson et 358 

al. (2009) in young basalts from monogenetic volcanoes in the Michoacan-Guanajuato 359 

Volcanic Field farther to the west (δ18Ooliv =5.5-6.0‰). Together with the olivines of 360 

Kluchevskoy volcano, Kamchatka which have δ18Ooliv up to 7.6‰ (Auer et al., 2009), 361 

central Mexico has the highest δ18Ooliv reported in arc magmas worldwide (Martin et al., 362 

2011). Notably, the Nb-rich magmas have similar values and ranges in δ18Omelt (= 363 

7.2±0.5‰, n=16) as the calc-alkaline (δ18Omelt = 7.4±0.5‰, n=24) and high-La series 364 

(δ18Omelt = 6.6-7.3‰, n=2). The olivines of the Old Texcal Flow (δ18Ooliv = 5.6‰), which 365 

best approximates the mantle prior to subduction modification, have one of the lowest 366 

melt δ18Omelt = 6.4‰ of the MVB. While still slightly above the range of MORB-type 367 

mantle melts (δ18Omelt =5.7 ± 0.2 ‰, Bindeman, 2008), the data confirm the end member 368 

character of the Old Texcal Flow (Straub et al., 2013a). 369 

6.2. Sr-Nd-Pb-Hf isotope ratios 370 

The Sr-Nd-Pb-Hf isotope ratios of our samples are within the range reported from 371 

previous studies (e.g. Cai et al., 2014; Martinez-Serrano et al., 2004; Meriggi et al., 2008; 372 

Schaaf et al., 2005; Siebe et al., 2004a). Our data, however, illustrate for the first time the 373 

systematic differences between calc-alkaline, high-La and Nb-rich magmas in all four 374 

isotope systems (Figures 5-7). In Sr-Nd isotope space, the calk-alkaline and high-La 375 

magmas are displaced to higher 87Sr/86Sr and/or higher 143Nd/144Nd relative to the Nb-376 

rich series (Figure 5). The Old Texcal Flow has the most radiogenic 143Nd/144Nd and least 377 

radiogenic 87Sr/86Sr closest to Cenozoic MORB which agrees with its end member 378 
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character in trace element space (Straub et al., 2013a). In Nd-Hf isotope space, the calc-379 

alkaline and high-La series, and the Nb-rich magmas, respectively, define two parallel, 380 

partially overlapping trends along the terrestrial array (Vervoort et al., 2011) (Figure 6) 381 

with the calc-alkaline series being displaced towards higher 176Hf/177Hf at a given 382 

143Nd/144Nd. Again, the Old Texcal Flow has the most radiogenic 143Nd/144Nd and 383 

176Hf/177Hf of the central MVB magmas, close in composition to Cenozoic MORB. In Pb 384 

isotope space, all arc samples plot on a tight, linear array whereby the Nb-rich series 385 

show a displacement towards more radiogenic Pb relative to the calc-alkaline magmas 386 

(Figure 7) that is typical for the MVB (Díaz-Bravo et al., 2014; Gomez-Tuena et al., 387 

2007a). However, the Old Texcal Flow does not form the most radiogenic end member, 388 

but plots in the middle of the arc array near the transition between calc-alkaline and 389 

high-Nb series with a slight, but significant displacement toward higher 206Pb/204Pb. 390 

The Sr-Nd-Pb isotope range of the arc magmas is much more limited than that of the 391 

crustal xenoliths which represent the crustal basement (Figure 5). The arc magmas 392 

generally align better with potentially recycled crustal components, such trench 393 

sediment, AOC, the Acapulco/offshore granodiorites and biotite gneiss which either 394 

coincide or bracket the arc array. We note that the relationships between the arc magmas 395 

and the recycled components differ in all four isotope systems. For example, in Sr-Nd 396 

isotope space, arc magmas are bracketed by AOC and trench sediment, and overlap 397 

with the Acapulco/offshore granodiorites, whereas the biotite gneiss is far more 398 

enriched than any of these components. In Nd-Hf isotope space, however, the calc-399 

alkaline and high-La arc magmas are instead bracketed by the radiogenic AOC and the 400 

unradiogenic granodiorites, respectively, while the trench sediments plots off the arc 401 

trend. In this diagram, the Nb-rich magmas extend to slightly more unradiogenic Nd 402 

and Hf isotopes than the granodiorites, and the biotite gneiss is far more unradiogenic 403 

than any of these compositions. In Pb isotope space, the Cenozoic AOC and the pelagic 404 

trench sediment are less radiogenic than the arc magmas, while terrigenous sediment, 405 

granodiorites and biotite gneiss are more radiogenic. The granodiorite partially overlaps 406 

with the high-Nb series, but not with the calc-alkaline magmas. 407 

7. DISCUSSION 408 

7.1. No evidence for crustal contamination 409 

We emphasize that the new data in their entirety confirm the lack of shallow crustal 410 

differentiation in the central MVB magmas (Straub et al., 2011b; 2013a; 2014). As 411 

discussed earlier, and exemplified by 143Nd/144Nd in Figure 8a, the systematic increase of 412 

melt silica with radiogenic isotope ratios rules out melt evolution by fractional 413 
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crystallization, but links the melt silica increase to changes in source composition 414 

(Gomez-Tuena et al., 2007a; Straub et al., 2013a; Straub et al., 2014). Crustal assimilation 415 

(or a combination of fractional crystallization and crustal contamination), which is often 416 

invoked for such correlations, however, fails in view of the 3He/4He - δ18O signature of 417 

the high-Ni olivines in the basaltic to andesitic magmas (Figure 4). 418 

The high-Ni, high 3He/4He =7-8 Ra olivines are either the only or first silicate phase in 419 

all three magma series (calc-alkaline, high-La, and high-Nb magmas) (Schaaf et al., 2005; 420 

Siebe et al., 2004a; Straub et al., 2008). As early-crystallizing olivines, they retain the 421 

primary He-O isotopic signatures of the arc melts before possible later crustal 422 

assimilation and secondary alteration (e.g. Eiler et al., 2000; Martelli et al., 2008). The 423 

3He/4He is extremely sensitive towards crustal assimilation, but the high 3He/4He of the 424 

olivines does not correlate with melt SiO2, despite as little as 0.01% mass of assimilated 425 

upper crust would be sufficient to lower the melt 3He/4He below the observed range 426 

(Figure 8b). This argues against crustal contamination. On the other hand, the high 427 

δ18Omelt values of the olivines are clearly above mantle values regardless of the 428 

fractionation correction, and point to a crustal component in the melts (Figure 8d,e). 429 

While the olivine δ18O does not correlate with the average olivine Fo78-90 (corresponding 430 

to Mg#=53-74 of melt) (Figure 9), it increases with increasing SiO2 of the host melts 431 

(Figure 8b). The increase exceeds the δ18O increase predicted by fractional crystallization, 432 

which agrees with results from high- δ18O olivine studies in the western MVB (Johnson 433 

et al., 2009). This correlation cannot be attributed to crustal assimilation either, as mixing 434 

of a high-Mg#, low SiO2, low δ18O component (e.g. basaltic mantle melt) with low-Mg#,  435 

high SiO2, high δ18O crustal component predicts correlation of the δ18O with both melt 436 

SiO2 and Mg#. Moreover, several tens percent of crustal material would be required in 437 

order to reproduce the increase in melt SiO2 (Figure 8d), which exceeds by far any mass 438 

tolerated by the 3He/4He of the olivines. Thus, if there is a crustal component in the 439 

central MVB melts, it must have been added from slab. Recycled crustal material, such 440 

as trench sediment or eroded crust, is initially rich in radiogenic 4He and has a low 441 

3He/4He < 0.1 (e.g., Martelli et al., 2008), but this He is driven off thermally in the 442 

subduction cycle. For one, the highest closure temperature for He in common rock 443 

forming minerals is Tc =600°C (Martelli et al., 2008). Therefore, subducted crustal 4He is 444 

unlikely to survive the prolonged subduction beneath the Mexican fore-arc, where the 445 

slab slowly heats up >600°C before reaching ca. 700-900°C at arc front depth (e.g. Ferrari 446 

et al., 2012; Manea and Manea, 2011). To the other, any remaining crustal He is unlikely 447 

to survive heating to temperatures >700°C during infiltration of the slab material into the 448 

hot mantle wedge prior to melt formation. 449 
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In summary, there is no evidence of significant crustal contamination in the basaltic 450 

and andesitic magmas at least in the olivine crystallization stage. Rather, the olivines 451 

crystallize from basaltic to andesitic mantle melts that contain a crustal component from 452 

the subducted slab. Remarkably, a correlation between melt silica and δ18O is expected 453 

from the 'pyroxenite model' of melt-rock reaction that predicts the melt SiO2 abundance 454 

of primary melts to increase with the amount of recycled slab component (e.g. 455 

incompatible trace elements, δ18O) in the mantle source (Straub et al., 2011b; 2014). Here, 456 

the melting of secondary pyroxenite veins can create melt series with compositional 457 

characteristics reminiscent of fractional crystallization and/or crustal assimilation 458 

despite of a different genesis (Straub et al., 2014). 459 

7.2. Identifying recycled slab components in Sr-Nd-Pb-Hf isotope space 460 

7.2.1. Constraints from Sr-Nd-Pb-Hf systematics 461 

The 3He/4He - δ18O data constrain the presence of a slab-derived crustal component in 462 

the arc magmas, but they do not identify this component which could be AOC, trench 463 

sediment or eroded crust, or a mixture of those. This information can be obtained 464 

through comparison of arc input and output in Sr-Nd-Pb-Hf isotope and trace element 465 

space. To date, studies proposed that the Sr-Nd-Pb-Hf isotope range of the MVB 466 

magmas was a mixture of components from the subducted AOC and trench sediment, 467 

and mantle wedge (e.g. Cai et al., 2014; Gomez-Tuena et al., 2007a; Straub et al., 2013a; 468 

Straub et al., 2014). If this is correct, then mixing trends calculated with these end 469 

members must pass through the arc data in Sr-Nd-Pb-Hf isotope space. We tested this 470 

inference by calculating first-order mixing curves shown in Figures 5-7. The shape of 471 

isotope mixing curves depends only on the isotope and element ratios of the end 472 

members, but not the concentrations of the elements (Langmuir et al., 1978). Because 473 

AOC (∼MORB) and the mantle wedge have similar elemental and - in first 474 

approximation - also isotopic ratios, binary mixing curves between AOC and trench 475 

sediment are sufficient to test the validity of the AOC-trench sediment-mantle mixing 476 

models prior to full quantification. Binary first-order mixing curves were calculated with 477 

measured end members given in Table 2. 478 

In Sr-Nd-Pb isotope space, the arc magmas plot on, or reasonably close to, 479 

AOC/mantle - trench sediment mixing curves (Figures 5,7). In Pb isotope space, the 480 

Cenozoic AOC (average 206Pb/204Pb ~18.1) is a better fit than the average of zero-age East 481 

Pacific Rise MORB which is more radiogenic (206Pb/204Pb ~18.4) (PetDB, 2011) (Figure 7). 482 

Moreover, the granodiorite and biotite gneiss emerge as possible crustal end member on 483 

Sr-Nd-Pb mixing curves, together with the trench sediment. The Sr-Nd-Pb isotopic ratios 484 
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do not distinguish between trench sediment and granodiorite/biotite gneiss crustal 485 

components. However, this seems possible in Nd-Hf isotope space, because of the 486 

different mixing trajectories between AOC/mantle, trench sediment and 487 

granodiorite/biotite gneiss. Mixing curves between AOC/mantle, and trench sediment 488 

are strongly curved, because these end members have very different Nd/Hf ratios 489 

(trench sediment Nd/Hf ~8-20, AOC Nd/Hf ~4, mantle Nd/Hf ~4). Therefore, these 490 

curves miss the arc magmas. However, the mixing curves between AOC/mantle and 491 

granodiorite are nearly linear and pass through most of the arc data, as the granodiorite 492 

and biotite gneiss have a similar low Nd/Hf ∼5-7 as the AOC/mantle component. This is 493 

confirmed in the corresponding 176Hf/177Hf vs Nd/Hf diagram, where mixing trends are 494 

linear. Again, the mixing lines between AOC/mantle and trench sediment, and 495 

particularly AOC/mantle - pelagic trench sediment, clearly miss the bulk of the arc data, 496 

while the granodiorite emerges as ideal crustal end member for most of the calc-497 

alkaline/high-La arc magmas, excepting only the Nb-rich magmas which extend to less 498 

radiogenic Hf ratios than the granodiorites. 499 

The shape of the AOC-sediment Nd-Hf isotope mixing curves is affected by Nd/Hf 500 

fractionation, which may happen during release from slab (e.g. Kessel et al., 2005). 501 

Current experimental and observational data disagree on the direction of fractionation. 502 

For example, some studies suggest that Nd is preferentially released in slab fluids 503 

(DNd/DHf <1) at pressures of 4 GPa or in a zircon-bearing slab (Kessel et al., 2005; Rubatto 504 

and Hermann, 2003). On the other hand, an allanite-saturated slab may preferentially 505 

retain Nd relative to Hf at 2.5 to 3 GPa (DNd/DHf >1) (Klimm et al., 2008; Skora and 506 

Blundy, 2010). Therefore, forward models are inconclusive, and we used an inverse 507 

approach to test for the possible influence of Nd/Hf fractionation. This is done by 508 

varying the Nd/Hf of trench sediment or AOC in a three component mixture (mantle, 509 

AOC, sediment) until the Nd-Hf isotope mixing curve passed through the arc data. In 510 

short, partial curve fits can be achieved in Nd-Hf isotope space by decreasing the Nd/Hf 511 

of the trench sediment or increasing the Nd/Hf of the AOC by a factor of 7 (which is 512 

high). However, both solutions fail in the corresponding Nd/Hf vs 176Hf/177Hf array. 513 

Decreasing Nd/Hf of the trench sediment causes the corresponding mixing curves to 514 

pass below the arc data in the Nd/Hf vs 176Hf/177Hf diagram (Figure 10a,b). Increasing 515 

Nd/Hf of the AOC, result the corresponding mixing curve plots above the bulk of arc 516 

data (Figure 10b,c). The only exception is the high-La group that it could be fit if one of 517 

the slab components had a high, fractionated Nd/Hf.  518 
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In summary, the Nd-Hf trace element and isotope systematics strongly argue for the 519 

granodiorite/biotite gneiss eroded from the forearc as crustal end member in the arc 520 

magmas instead of the trench sediment. The granodiorite appears the volumetrically 521 

more important recycled lithology, as it seems prevalent in the ubiquitous calc-alkaline 522 

series. In contrast, the biotite gneiss is much farther removed from the arc array, and fits 523 

lesser well with the arc trends than the granodiorite. 524 

7.2.2. Other slab components and processes 525 

While the high-La and Nb-rich series are close to the calc-alkaline magmas in isotope 526 

space, their trace element characteristics require additional processes and/or source 527 

components. The calc-alkaline and high-La series likely involve the same source 528 

materials, but the much higher Nd/Hf of the high-La series (by up to a factor of 3) points 529 

to fractionation of these elements which most likely occurs during release from slab. The 530 

few high-La magmas do not form trends in Nd-Hf isotope and trace element space and 531 

thus provide no clue as which slab component - AOC or granodiorite, or a mixture of 532 

both – fractionates. The fractionated nature of this slab component is consistent with 533 

their other characteristics, such as the low Nb (=4-8 ppm) which is coupled with high 534 

Nb/Ta (17.2-19.5) and LREE-enrichment. Arc magmas with similar signatures are 535 

globally rare, but have been reported from the western MVB (Gomez-Tuena et al., 2011) 536 

and the Solomon and Indonesia arcs (Goss and Kay, 2009; Koenig and Schuth, 2011; 537 

Stolz et al., 1996). In either setting, these magmas have been linked to deep (≥140 km) 538 

partial melting of an fairly hot (>900-1050°C) eclogitic slab that has residual rutile, but 539 

lost all other REE-bearing phases like monazite and allanite (Gomez-Tuena et al., 2011; 540 

Koenig and Schuth, 2011). Deep partial slab melts that escaped mingling with other slab 541 

component released at shallower depths could account for the isolated eruption of high-542 

La in randomly distributed small (<<1 km2) cones remote from composite and larger 543 

monogenetic volcanoes.  544 

The Nb-rich magmas contain isotopically different source components, as evident 545 

from their systematic differences to the calc-alkaline/high-La magmas in Sr-Nd-Pb-Hf 546 

space (Figures 10-12). The similarity of the Nb-rich magmas to intraplate magmas has 547 

lead to suggestions that these may derive from inherently enriched mantle domains (Cai 548 

et al., 2014; Gomez-Tuena et al., 2011; Wallace and Carmichael, 1999). However, their 549 

high δ18O and high-Ni olivines as well as details of major and trace element systematics 550 

(Straub et al., 2013a) clearly point to a slab influence that is comparable in magnitude to 551 

that of calc-alkaline series in most of the Nb-rich magmas. Thus, the isotopic differences 552 

imply that the mantle sources of the Nb-rich magmas were infiltrated by isotopically 553 
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different slab components(s). More than one factor, however, is responsible for the 554 

isotopic differences. One factor is that the calc-alkaline/high-La series are more hydrous 555 

than the Nb-rich series, having several wt% melt water compared to ≤1 wt% of the Nb-556 

rich magmas (e.g. Cervantes and Wallace, 2003a; Johnson et al., 2009; Roberge et al., 557 

2009). Thus, and consistent with previous models (e.g. Gomez-Tuena et al., 2007a; Straub 558 

et al., 2014), the source of the calc-alkaline/high-La series seems to receive more slab 559 

fluids, such as Sr-and Pb –rich fluids (or possibly hydrous melts) from AOC. An AOC 560 

fluid rich in the unradiogenic Pb of the Cenozoic MORB-type crust may shift the calc-561 

alkaline/high-La magmas towards lesser radiogenic Pb isotope ratios relative to the 562 

high-Nb magmas in Pb isotope space (Figure 12). AOC fluids may also carry Sr with a 563 

87Sr/86Sr higher (up to~0.705, Staudigel et al., 1995) than that fresh MORB (87Sr/86Sr ∼0.702-564 

3) of AOC, and shift the calc-alkaline/high-La magmas towards higher 87Sr/86Sr at a given 565 

143Nd/144Nd (Figure 11) (e.g. Gomez-Tuena et al., 2007a; 2013a; Straub et al., 2014). 566 

A fractionated fluid component that is enriched in fluid mobile LILE relative to the 567 

HFSE does not account for the trace element budget of the Nb-rich magmas. Instead, the 568 

slab component infiltrating the source of the Nb-rich magmas must be rich in Nb and 569 

Ta, and have high Nb/Ta (16-19.4), high Nb/La (~0.9), low Th/La (0.11) and the low 570 

Nd/Hf (~4). This rules out the granodiorites or similar crustal material as source as this 571 

material has fractionated trace element signatures which it would transmit to the mantle 572 

(Appendix Figure 2). On the other hand, intraplate basalts have the requisite isotope and 573 

trace signatures (e.g. Hofmann, 2003). We tentatively suggest that the source of the high-574 

Nb magmas may have been infiltrated by crust constructed by intraplate seamount 575 

magmas. It is possible that such seamount crust was part of the largely inaccessible 576 

continental fore-arc basement. Alternatively, it could be part of subducting Cocos plate 577 

where clusters of intraplate seamounts are common (e.g. Bohrson and Reid, 1995; 578 

Castillo et al., 2010; Niu and Batiza, 1997). Local recycling of seamount material, 579 

mingling to some extent with granodiorite, could account for the limited distribution of 580 

the Nb-rich magmas in space and time in the Sierra Chichinautzin (Straub et al., 2013b) 581 

as well as along the volcanic front of the entire MVB. 582 

7.3. Magnitude and impact of the eroded crust on arc magmas 583 

The granodiorite emerges are important component in the arc magmas. In order to 584 

quantitatively assess its influence, we used a combination of inverse methods (trace 585 

elements) and forward modeling techniques (radiogenic isotopes). This two-fold 586 

approach minimizes the inherent uncertainties of flux quantification where many 587 

variables are model-dependent. 588 
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7.3.1. Estimating the total slab flux from trace elements 589 

First, we estimated the total percentage of slab-derived Sr, Pb, Nd and Hf in the arc 590 

magmas by the inverse method of Pearce et al. (1995a). The method calculates the 591 

difference for each sample between the observed concentration of an element – which is 592 

that of a melt from the subduction-modified mantle - and its concentration in a 593 

hypothetical melt from the same mantle free from slab additions ('background mantle'). 594 

These differences then scale to the percentage of the slab-derived element in the arc 595 

magmas. Assuming Nb and Yb to be mantle-derived, Pearce et al. (1995a) used Nb/Yb 596 

ratios to calculate the 'background magma'. In the central MVB, however, Nb is added 597 

from slab, and hence TiO2/Lu is used (Straub et al., 2013a; 2014). Moreover, instead of 598 

MORB-type mantle source (Pearce et al., 1995a), we used primitive mantle for 599 

calculating the slab-derived percentages for the high-Nb magmas, and residual 600 

primitive mantle (after 3.5% melt extraction) calculating those of the calc-alkaline and 601 

high-La magmas. Only with magmas with Mg#>60 were used in order to ensure the use 602 

of trace element ratios in the most primitive magmas. 603 

The trace element inversion confirms a strong slab flux of Sr, Nd, Pb and Hf for all 604 

three arc magma series, with the Nb-rich magmas (>44-59% of Sr, Nd, Pb and Hf slab-605 

derived) having about one third less slab contribution than the calc-alkaline (>69-89%) 606 

and high-La series (73-96%) (Table 1). In Figure 13, the slab-derived percentages are 607 

plotted against the relevant isotopic composition. The Old Texcal Flow is always the 608 

least influenced by the slab flux (slab-derived Pb ∼18%, Sr ∼34% Nd ∼16% Hf ∼20%) and 609 

forms a common point of origin from which the trends of calc-alkaline/high-La and 610 

high-Nb magmas diverge towards different slab components. These trends agree with a 611 

model of a homogenous mantle that was infiltrated by at least two isotopically distinct 612 

slab components. Remarkably, there are no clear trends towards the trench sediment, 613 

which confirms its negligible influence on the arc magmas. This is most evident for the 614 

arc Sr that must principally originate from recycled AOC and/or granodiorite, without 615 

any apparent contribution of sedimentary Sr. Another feature is that none of the arc 616 

trends heads towards the same, or the same mix, of slab components in all four isotope 617 

systems. This supports the concept of the slab flux being a composite of several 618 

individual components that mix in variable proportions. 619 

7.3.2. Quantifying the slab sources in isotope space 620 

Forward mixing models in isotope space allow for the estimation of the individual 621 

contributions of mantle and slab components to the arc magmas. The first step is to fit 622 

mixing curves through the arc data with the appropriate end members (mantle, AOC, 623 
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granodiorite/seamounts). A model curve is valid if (i) it passes through the data, and (ii) 624 

the modeled elemental ratios reasonably reproduce those of the magmas. We first used 625 

the measured elemental ratios of the end members (Table 2). If the mixing curve did not 626 

pass through the arc data, then the elemental ratios of the slab-derived end members 627 

were modified based on the results from experimental studies. 628 

Suitable mixing curves can be generated in Nd-Hf-Pb isotope space without problem 629 

(Figures 10,12). In Sr-Nd isotope space, however, the Sr/Nd of the slab component needs 630 

to be adjusted in order to reproduce the high Sr/Nd of the arc magmas (calc-631 

alkaline/high-La series Sr/Nd∼25±4; Nb-rich magmas Sr/Nd ∼19±4). This exceeds those of 632 

the main sources (mantle ∼12-16, AOC ∼12, granodiorite ∼9, intraplate seamounts ∼13). 633 

Mixing curves were fitted by increasing the AOC Sr by a factor of 2.5 for the Nb-rich 634 

magmas. For the calk-alkaline series, the Sr flux was increased by a factor of 3 for 635 

granodiorite and 4 for AOC. While these adjustments are somewhat arbitrary, they 636 

provide a measure of the magnitude of the required Sr excess from slab. The final 637 

isotope and elemental ratios of the end members are given in Table 2. 638 

For the calculation of the Sr-Nd-Pb-Hf mixing curves, compositions of idealized, 639 

average end member are used (Figures 10-12). While mantle, AOC and granodiorite 640 

compositions are reasonably well known (Table 2), the composition of the inferred 641 

recycled seamount component is unknown, and therefore its quantification is tentative. 642 

For an estimate, we used the Sr, Nd, Pb and Hf abundances of off-axis seamounts with 643 

Nb >13-46 ppm from Niu and Batiza (1997), and estimated the isotope ratios of end 644 

members from the Sr-Nd-Pb-Hf isotope mixing systematics of the arc magmas.  645 

Two different types of background mantle were chosen: a primitive mantle for the 646 

Nb-rich magmas, and a residuum of primitive mantle after 3.5% melt extraction for the 647 

calc-alkaline and high-La series (Table 2). The elemental abundances and ratios of the 648 

slab components vary considerably depending on whether the slab material is released 649 

as bulk component ('slab diapir'), or as partial fluid or melt. Forward estimates are thus 650 

inherently uncertain because these depend on a multitude of often poorly known 651 

variables (e.g. metamorphic history of slab, partition coefficients, mixing proportions, 652 

slab residual mineralogy, thermal structure and composition, physical properties). 653 

Again, we choose the simplest approach by using the measured elemental abundances 654 

of the end members, with only the abundance adjustment for Sr (Table 2). This approach 655 

minimizes the calculated influence of the slab flux on the arc magmas. In addition, 656 

mixing proportions were chosen to minimize the contributions of granodiorite. In Sr-657 

Nd-Hf isotope space, the arc data can be reproduced with a slab component composed 658 
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of 50% AOC and 50% granodiorites (or seamount material for the high-Nb magmas). 659 

The same mixing ratio is valid for the AOC-seamount slab component in Pb isotope 660 

space. The granodiorites, however, are so enriched in Pb relative to mantle and AOC 661 

that only 10% in the slab component is needed to reproduce the data. A 20% of the 662 

composite slab component was mixed with the mantle wedge, which is consistent with 663 

major and trace element constrained from previous studies (Straub et al., 2011b; 2013a; 664 

2014). Modeling parameters are given in Table 2, and the results are summarized in 665 

Table 3. 666 

In summary, the isotope models suggest (within model uncertainty) a slab flux similar 667 

in magnitude to results to that produced by the trace element inversion with the 668 

exception of Hf (Tables 1 and 3). Slab-derived percentages are for Sr ~78-96% (compared 669 

to 49-95% from trace element inversion), for Pb ~76-86% (59-96% from inversion), for Nd 670 

~76-87% (47-93% from inversion) and for Hf ~75-87% (44-73% from inversion). The 671 

significant observation is the high slab contribution relative to that of the mantle wedge, 672 

and in particular that of the granodiorite. The granodiorite controls the isotope 673 

chemistry of the calc-alkaline magmas/high-La, to which they supply most of the Sr 674 

∼73%, Pb ∼61%, Nd ∼68% and Hf ∼87%. Likewise, the purported seamount component 675 

makes a strong, but somewhat lesser contribution to the Nb-rich magmas (Sr ∼37%, Pb 676 

∼54%, Nd ∼51% and Hf ∼46%) relative to mantle and AOC. The overall contributions of 677 

the AOC fluids to the arc magmas are fairly low, with only Sr ~23-42%, Pb ~22-25%, Nd 678 

~21-25% and Hf ~27-28%. Even if contribution of the Pb AOC is likely underestimated, 679 

as the model makes no allowance for Pb enrichment in AOC fluids, the moderate 680 

influence of AOC-derived Pb on the arc Pb isotope ratios agrees with their lack of 681 

isotopic overlap with AOC, which is unlike many other arcs where the influence of AOC 682 

components is much stronger (Figures 11, 12) (e.g. Straub and Zellmer, 2012). Overall, 683 

the modeling results imply a strong influence of eroded granodiorite on the calk-alkaline 684 

and high-La magmas, while the Nb-rich magmas are influenced to similar extent by 685 

another slab component (possibly seamounts). 686 

7.4. Why does the trench sediment align with the MVB magmas in Sr-Nd-Pb 687 

isotope space? 688 

The Acapulco/offshore granodiorites, possibly complemented by an unknown 689 

seamount component, provide an excellent recycled crustal component for the MVB 690 

magmas, but the question remains why the trench sediments align so well with the arc 691 

magmas in Sr-Nd-Pb isotope space? A simple answer may be that trench sediment and 692 

arc magmas are essentially mixtures of the same, or similar, components from 693 
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continental crust and MORB. The arc magmas, however, form by mixing of these 694 

components in the mantle, whereas the sediments form by mixing on the Earth' surface. 695 

Marine sediment is essentially the debris of continental erosion (lithogenic dust, volcanic 696 

ash, riverine and hemipelagic input) that is diluted by biogenic components in the 697 

oceans (Plank, 2004; Plank and Langmuir, 1998; Vervoort et al., 2011). The sediment 698 

87Sr/86Sr and 143Nd/144Nd is controlled by Nd- and Sr-rich debris and dust from the North 699 

American continent, and is similar in pelagic and terrigenous sediments. The continental 700 

debris also controls the Pb isotope composition of the sediments, but close to mid-ocean 701 

ridges the continental signal is overprinted by MORB-type Pb delivered by 702 

hydrothermal fluids. Thus, only the terrigenous sediment (Pb = 21 ppm) reflects the Pb 703 

isotopes of the continental crust, whereas the Pb-rich pelagic sediment (Pb= 66 ppm 704 

LaGatta, 2003) is displaced towards the unradiogenic Pb typical of Cenozoic MORB. In 705 

Nd-Hf isotope and trace element space, however, sediment does not align with crust-706 

mantle trends, because of fractionation during transport from the continent. For 707 

example, early loss of Hf-rich heavy minerals in rivers (e.g. zircon) increases the Nd/Hf 708 

ratio of the suspended load, and hydrothermal fluids may change the Nd and Hf isotope 709 

ratios of the continental debris (e.g. Garcon et al., 2013; Garçon et al., 2014; Vervoort et 710 

al., 2011). Thus, the Nd-Hf isotope and trace element signature of the continental crust is 711 

different from the trench sediment, allowing their signatures to be discriminated in the 712 

arc magmas. 713 

7.5. Recycling by slab diapirism – a physical model 714 

7.5.1. Estimating the amount of eroded recycled crust 715 

A significant outcome of our study is that the trench sediment does not influence the 716 

central MVB arc magmas. However, there is no evidence for sediment accumulation in 717 

the trench, and all trench sediment seems to have been subducted (Manea et al., 2003). 718 

Consequently, the signal of the trench sediment in the calc-alkaline arc magmas must be 719 

concealed by the eroded granodiorite. We estimated the minimum amount of 720 

granodiorite needed to conceal the trench sediment from the Nd and Hf fluxes. The 721 

volume of the trench sediment is ∼8.84 km3/km/Myr, at a convergence rate of 52 722 

km/Myr, thickness of 170 m (Plank, 2014), density of 1370 kg/m3 and water content of 59 723 

wt%. Thus, it supplies Nd= 169.3 g/km/Myr and Hf= 10.6 g/km/Myr with an average 724 

Nd/Hf =16 [based on Plank (2014)]. A similar thickness of granodiorite with a density of 725 

2700 kg/m3 and zero water content would supply Nd=782.9 g/km/Myr and Hf=136.0 726 

g/km/Myr with an average Nd/Hf=5.8. Therefore, in order to generate Nd/Hf <6 of the 727 

total recycled crustal component, the mass of eroded crust must exceed that of the trench 728 



 22 

sediment by at least 9-10 times. This corresponds to a minimum rate of recycled 729 

granodiorite of ∼79-88.4 km2/Myr. 730 

This estimate exceeds by more than two times the estimate of Ducea et al. (2004) who 731 

inferred one-dimensional exhumation rates of 0.18 km/Myr from (U-Th)/He 732 

thermochronology of the south central Mexican basement, and estimated ∼30 733 

km3/km/Myr crustal loss by subduction during the Miocene. On the other hand, our 734 

estimate compares well with the numbers derived from the reconstruction of the shape 735 

of the missing Eocene to Miocene fore-arc. The unusual location of the MVB at ∼360 km 736 

from the trench has been interpreted as the result of a process of slab flattening between 737 

middle and late Miocene (Ferrari et al., 1999). Thus, the pre-Miocene arc location is 738 

inferred from the configuration of the general Rivera-Cocos subduction, where the arc is 739 

~150 km from the trench in the Jalisco-Colima region, but between 150 and 200 km from 740 

the trench in Guatemala. At fore-arc crustal thickness of 20 km (Kim et al., 2010), the 741 

crustal loss would be between 20x150km2=3000 km2 and 20x200 km2=4000km2. Given the 742 

~50 Ma age of batholiths of the Acapulco coast (Hernández-Pineda et al., 2011), and a 743 

~17 Ma start of the MVB volcanic activity (Gómez-Tuena et al., 2007b), this yields an 744 

average rate of 60-80 km3/km/Myr for the last in 50 Ma. Thus, our estimate can be 745 

considered as realistic. 746 

7.5.2. Granodiorite recycling by slab diapirism  747 

The high rate of recycled granodiorite has consequences for the style of mass transfer 748 

from slab to wedge. Assuming the subducted granodiorite to be ~9-10 times thicker than 749 

trench sediment (= 170 m thick), it would reach a thickness of ∼1500-1700 meters. 750 

Together with the typical low density of a quartz-feldspar lithology (2700 kg/m3) and the 751 

estimated slab temperatures below the arc front of ∼700-900°C (Ferrari et al., 2012; 752 

Manea and Manea, 2011), these are ideal conditions for buoyant detachment of the 753 

granodiorite from slab as 'slab diapirs' without need for slab melting (Behn et al., 2011; 754 

Gerya et al., 2004; Gómez-Tuena et al., 2014; Hacker et al., 2011). Such slab diapirs are a 755 

highly efficient way to transfer large amounts of slab material into the mantle wedge. 756 

Silicic diapirs can react with the peridotite in similar ways as perceived for silicic slab 757 

fluids or melts, and form secondary pyroxenites. Importantly, as the granodiorite has 758 

similar low average Ho/Lu = 2.5 ± 0.5 as the mantle wedge (Ho/Lu ~2.2), it will not 759 

impose a garnet signature on the mantle either. 760 

A recycling cartoon is shown in Figure 14. The granodiorite is depicted to rise 761 

buoyantly in the form of diapirs without melting. It may have little intrinsic water, but 762 

water could be added from the dewatering AOC, as well as from serpentinite lithologies 763 
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from within and below the AOC (e.g. Gómez-Tuena et al., 2014). The granodiorite 764 

diapirs dominate by far the slab flux, and are complemented by deep slab melts may 765 

form at >140 km and infiltrate the source of the high-La magmas. The high-Nb magmas 766 

are tentatively interpreted to be recycled intraplate seamount crust that is entrained into 767 

the granodiorite diapirs. All slab components rise into the hot interior of the mantle 768 

wedge where they react with the peridotite to form pyroxenite segregations that then 769 

melt in the upwelling mantle, and mix during ascent through mantle and crust. The 770 

numerous, closely spaced, but compositionally highly diverse small volume 771 

monogenetic volcanoes (≤1 km3) may be the surface expressions of a heterogeneous sub-772 

arc mantle interspersed with pyroxenite veins. On the other hand, a succession of 773 

individual slab diapirs channelized at a preferred spot of over a longer period of time 774 

(several 100 ka to 1 million years), may ultimately accumulate the eruptive volumes of 775 

several 100 km3 typical of the composite volcanoes (e.g. Gómez-Tuena et al., 2014). 776 

7.6. The impact of subduction erosion on the central MVB magmas 777 

Our recycling model implies that the slab flux controls the budget of the highly 778 

incompatible elements in the arc magmas. We tested this inference by means of the 779 

incompatible element ratios Th/La and Nb/Ta, that are difficult to fractionate during 780 

subduction processing (e.g. Foley et al., 2002; Plank, 2004). Th/La ratios (=0.09 to 0.37) 781 

span the global range from the low Th/La (~0.05) of the mantle to the high Th/La (~0.37) 782 

of upper continental crust (e.g. Plank, 2004; Rudnick and Gao, 2002). The range of Nb/Ta 783 

(=12.3-19.5) is similarly broad, and only excludes the rare, supercondritic Nb/Ta >19.9 784 

reported from some arcs (Gomez-Tuena et al., 2011; Koenig and Schuth, 2011; Stolz et al., 785 

1996) (Figure 15). 786 

Mixing relationships with 143Nd/144Nd confirm that the Th/La and Nb/Ta of the calc-787 

alkaline series is inherited from the inherently heterogeneous granodiorite. The 788 

granodiorites form a perfect end member that would buffers the MVB magmas at high 789 

143Nd/144Nd and at a broader range of Th/La and Nb/Ta. Some granodiorites also have 790 

the low Th/La and high Nb/Ta intrinsic to the high-Nb magmas. However, oceanic 791 

seamounts have the same characteristics and provide a more likely end member given 792 

their isotopic and trace element composition (Figure 15). 793 

The strong influence of the various recycled components on MVB melt chemistry is 794 

best evident in Nb vs Nb/Ta space (Figure 16). The Old Texcal Flow (proxy to melt from 795 

mantle wedge prior to subduction modification) divides this diagram into four 796 

quadrants. The high-La magmas all plot in the upper left quadrant which combines high 797 

Nb/Ta >17 with low Nb concentrations typical of a signature of deep melts from eclogitic 798 
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slabs with residual rutile (Gomez-Tuena et al., 2011; Koenig and Schuth, 2011). The high-799 

Nb series occupy quadrant II with their combination of high Nb and Nb/Ta being 800 

tentatively attributed to the recycling of seamount material. The calc-alkaline magmas 801 

(quadrant III), have the low Nb and Nb/Ta (∼12-16) typical of continental crust material, 802 

here recycled by subduction erosion. Calc-alkaline magmas with these characteristics 803 

dominate the entire MVB volcanic front (2014; Gómez-Tuena et al., 2007b). Previous 804 

studies linked the low arc Nb/Ta to the partial melting of an amphibole-bearing slab, as 805 

amphibole is the only major slab phase that can retain Nb relative to Ta, and produces 806 

slab melts with low Nb and Nb/Ta (Foley et al., 2002; Gomez-Tuena et al., 2007a; Gomez-807 

Tuena et al., 2011; Koenig and Schuth, 2011). However, most of the MVB arc front is 808 

located >80 km above the slab and thus beyond the amphibole-eclogite transition 809 

(Tatsumi and Eggins, 1995). Here, regardless of amphibole stability, recycling of pre-810 

existing continental crust with intrinsically low-Nb/Ta provides a simpler cause for the 811 

predominantly low Nb/Ta of MVB magmas. 812 

Likewise, if the granodiorite transmits the high Th/La to the calc-alkaline series, there 813 

is no need for additional Th/La fractionation of the magmas, either during slab 814 

processing (e.g. Cai et al., 2014) or by shallow crustal differentiation (e.g. Plank, 2004). 815 

Additional Th/La fractionation is only needed if all source components had lower Th/La 816 

than the arc. While AOC, mantle wedge and average trench sediment all have low Th/La 817 

(Cai et al., 2014), the granodiorite (Th/La=0.25±0.10) has similar high and variable Th/La 818 

as the calc-alkaline arc magmas (=0.21±0.06). Here, our results support the crustal 819 

recycling model of Plank (2004) who proposed that the high Th/La in global arcs is 820 

essentially inherited from perpetual recycling of continental crust via the trench 821 

sediment (~upper continental crust, Plank and Langmuir, 1998) and expand it to include 822 

continental crust recycled by subduction erosion. 823 

There are other compositional features that the calc-alkaline central MVB may inherit 824 

from granodiorite. The low Sr/Y ∼11 of the granodiorite, regardless of additional Sr from 825 

AOC fluids, appears to control the low Sr/Y of the arc magmas (<50). This explains the 826 

absence of 'adakitic' high Sr/Y> 50 in the central MVB that has been considered as arc 827 

with a 'young and hot' slab prone to melting in previous studies (e.g. Cai et al., 2014; 828 

Defant and Drummond, 1990). The granodiorites may also buffer the Ba, Rb, Ba and Pb 829 

abundances on the arc to their comparatively low abundances, which are too low if the 830 

arc input would be made up AOC and the trench sediment that is highly enriched in 831 

these elements (Gomez-Tuena et al., 2007a). Overall, the central MVB poses an excellent 832 

example for a volcanic arc that may principally grow by recycling of pre-existing 833 
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continental crust rather than through the creation of new arc crust by subduction 834 

processing. 835 

8. CONCLUSIONS 836 

The following are the conclusions of this study: 837 

(1) The Nd-Hf isotope and trace element systematics of central Mexican arc magmas 838 

identify granodiorites eroded from the continental fore-arc, and not trench 839 

sediment, as the principal recycled component of continental crust. 840 

(2) The calc-alkaline arc magmas of the central MVB (>95% of the erupted volume) are 841 

mixtures of recycled granodiorite, subducted AOC and mantle wedge. Rare, 842 

strongly fractionated high-La magmas, and a minor group of Nb-rich magmas, can 843 

be linked to deep slab melting, and the local recycled of seamount material, 844 

respectively. 845 

(3) With an estimated mass flux of 79-88 km3/km/Myr, thickness of 1500-1700 m and 846 

density of 2700 kg/m3, the eroded granodiorite layer is conducive to the buoyant 847 

ascent from slab in form of 'slab diapirs', with no need for slab melting, at the 848 

estimated slab temperatures of 700-900°C.  849 

(4) Th/La, Nb/Ta and other key trace element ratios of the calc-alkaline magmas are 850 

inherited from the granodiorite, suggesting that the MVB arc grows by recycling of 851 

the continental crust rather than by formation of new continental crust. 852 
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11. FIGURE CAPTIONS 1233 

Figure 1: Plate tectonic setting of the Trans-Mexican Volcanic Belt (MVB). a. Locations of 1234 

DSDP/ODP/IODP drill sites samples on Pacific Plate (MORB glasses) and Cocos Plate (sediment, 1235 

continental basement), and crust outcrops and xenoliths within and south of the MVB. Numbers 1236 

in brackets next to IODP drill sites are basement ages in million years. Piston corer locations from 1237 

Cai et al. (2014). Basemap from GeoMappApp (2014). b. Trans-Mexican Volcanic Belt (grey 1238 

shaded) with principal Quaternary volcanoes redrawn from Blatter et al. (2001). Slab contours 1239 

after Pardo and Suarez (1995). Locations of crustal materials are those of Gómez-Tuena et al. 1240 

(2003, Palma Sola xenoliths), Martinez-Serrano et al. (2004,Nevado de Toluca xenoliths), Schaaf et 1241 

al. (2005, Popocatepetl xenoliths), Gómez-Tuena et al. (2008, Chalcatzingo xenolith), Ortega-1242 

Gutiérrez et al. (2011, Puente Negro xenoliths), Hernández-Pineda et al. (2011, Eocene Acapulco 1243 

intrusion ), Pérez-Gutiérrez et al. (2009, Mesozoic Xolapa migmatites) and Ortega-Gutiérrez et al. 1244 

(2014, Valle Santiago xenoliths ). NDT – Nevado de Toluca, POP – Popocatepetl EPR – East 1245 

Pacific Rise, RFZ – Rivera Fracture Zone, MC – Mexico City, TFZ – Tamayo Fracture Zone. c. NE-1246 

SW cross section of Mexican continental slope and trench with incoming Cocos plate drilled 1247 

during DSDP Leg 66, redrawn from Watkins et al. (1981). Continental basement was drilled at 1248 

Sites 493 (granodiorite) and 489 (B -biotite gneiss). Trench sediment was analyzed at Sites 488 and 1249 

487 (Cai et al., 2014; LaGatta, 2003; Plank, 2014; Plank and Langmuir, 1998; Verma, 1999b), and 1250 

oceanic basement at Site 487 (Cai et al., 2014, this study; Verma, 1999b). 1251 

 1252 

Figure 2: Study area in the central Mexican Volcanic Belt. Monogenetic volcanoes (small open 1253 

circles) of the Sierra Chichinautzin Volcanic Field are flanked by Quaternary composite volcanoes 1254 

Nevado de Toluca and Popocatepetl-Iztaccihuatl. Large symbols denote samples with olivines 1255 

analyzed for both 3He/4 e and δ18O. Location of most mantle-like magmas ('Old Texcal Flow') is 1256 

indicated, as well as location of high-La volcanic rocks (St. Cruz, Tuxtepec and Yecahuazac 1257 

Cone). CV – City of Cuernavaca, TL City of Toluca  1258 

 1259 

 1260 

Figure 3: Multi-element diagram of incompatible trace elements of central MVB magmas 1261 

normalized to primitive mantle of McDonough and Sun (1995). For clarity, only magmas with 1262 

high 3He/4He and high δ18O are shown. a. Thick black line denotes the 'Old Texcal Flow' which is 1263 

least influenced by slab and closely resembles a ∼3.5% melt from primitive mantle (Straub et al., 1264 

2013a, 2013b). While per definition a high-Nb basalt (Nb=18 ppm), it has no end member 1265 

character and is intermediate to calc-alkaline and high-Nb series. b. MVB magmas compared to 1266 

melts from residual mantle after 3.5 to 10% melt extraction from a primitive mantle (which 1267 

produced the Old Texcal Flow after minor subduction modification). Residual mantle modeled 1268 

from primitive mantle McDonough and Sun (1995) and partition coefficients from Donnelly et al. 1269 

(2004). Mantle depletion by melting is so efficient that the slab flux either strongly influences 1270 

(MREE) or controls (LREE and more incompatible elements) the arc budgets of elements more 1271 

incompatible than Ho. Only Ti and rare earth elements Ho to Lu remain mantle- controlled by 1272 

mantle. See also Straub et al. (2014). 1273 
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 1274 

Figure 4: 3He/4He vs δ18O of olivine phenocrysts in central MVB volcanic rocks. δ18O recalculated 1275 

to ratios in equilibrium melt *δ18Omelt = δ18Ooliv +0.088*SiO2-3.57 after Bindeman (2008)]. 3He/4He of 1276 

olivines are from Straub et al. (2011b). 3He/4He in MORB and continental crust from Farley et al. 1277 

(1998) and O’ ions and Oxburgh (1988); δ18O in mantle rocks from Bindeman (2008). Host 1278 

magmas are basalts to andesites with up to 61 wt% SiO2. 1279 

 1280 

Figure 5: 87Sr/86Sr vs 143Nd/144Nd of volcanic rocks and various crustal materials (Cenozoic 1281 

MORB, trench sediment, continental basement). See Figure 1 for sample locations. Quaternary 1282 

MORB is from the East Pacific Rise (PetDB, 2011). Large symbols denote volcanic rocks with 1283 

olivines analyzed for 3He/4 e and δ18O. Thick grey lines are simple mixing curves between AOC, 1284 

mantle wedge (which have similar 87Sr/86Sr and Sr/Nd) and trench sediment (see text for 1285 

discussion). The biotite gneiss of DSDP Site 489 it marked with a 'B'. Inset identifies the Old 1286 

Texcal Flow and illustrates differences between calc-alkaline, high-La and Nb-rich magmas. For 1287 

data sources see text. 1288 

 1289 

Figure 6: a. 143Nd/144Nd vs. 176Hf/177Hf, and b. 176Hf/177Hf vs. Nd/Hf of central MVB magmas and 1290 

crustal materials (MORB, trench sediment, continental basement). See Figure 5 for symbols. Thick 1291 

grey lines are simple mixing curves between AOC and trench sediment. Note that a mantle 1292 

component would not affect the curvature of the mixing line, since mantle has similar Nd/Hf ~4 1293 

(as well as Nd and Hf isotopic ratios) as the AOC. Mixing models must match arc data in both 1294 

diagrams to be valid. The trench sediment fails as crust end member, while the 1295 

offshore/Acapulco granodiorite lie in line with the AOC and compositions. Inset identifies the 1296 

Old Texcal Flow and illustrates differences between calc-alkaline, high-La and Nb-rich magmas. 1297 

For data sources see text. 1298 

 1299 

Figure 7: a. 207Pb/204Pb vs. 206Pb/204Pb, and b. 208Pb/204Pb vs. 206Pb/204Pb of central MVB magmas 1300 

and crustal materials (MORB, trench sediment, continental basement). See Figure 5 for symbols. 1301 

The thick grey line is a mixing curve (which are linear in Pb isotope space) through the central 1302 

MVB magmas which are aligned with slab and mantle materials. The Cenozoic AOC (average 1303 

~18.2) fits much better as unradiogenic end member of the arc array than the more variable zero-1304 

age Quaternary MORB from the East Pacific Rise. Inset identifies the Old Texcal Flow and 1305 

illustrates differences between calc-alkaline, high-La and Nb-rich magmas. For data sources see 1306 

text.  1307 

 1308 

Figure 8: Central MVB magmas: a. Bulk rock 143Nd/144Nd vs SiO2 wt%. b. 3He/4He (olivine) vs 1309 

SiO2 wt% (bulk rock) with mixing curves from Straub et al. (2014). c. δ18O (olivine) vs SiO2 wt% 1310 

(bulk rock), and d. δ18Omelt [calculated from olivine after Bindeman (2008): δ18Omelt = δ18Ooliv + 0.088 1311 

* SiO2 (wt%)-3.57] vs SiO2 wt% (bulk rock). MORB field and fractional crystallization trajectory 1312 

after Bindeman (2008). Mixing curves calculated with a crustal component SiO2= 69 wt% and 1313 

δ18O= 8-12 ‰, and a mantle melt of  iO2= 49 wt% and δ18O= 5.8 ‰, respectively. See text for 1314 

discussion. 1315 
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 1316 

 igure 9: δ18Omelt vs. average fosterite of cores of olivine phenocrysts. Olivine concentrations are 1317 

from Straub et al. (2011b; 2013a, this study; 2008). The δ18O of continental crust is after Bindeman 1318 

(2008). 1319 

 1320 

Figure 10: Nd-Hf isotope and trace element mixing models. Valid models require mixing curves 1321 

to pass through arc data in both the 143Nd/143Nd vs 176Hf/177Hf and Nd/Hf vs 176Hf/177Hf space. The 1322 

models first calculate a 'bulk slab component' (AOC and bulk trench sediment, or AOC and 1323 

granodiorite) shown as thick lines with 10% increments. The bulk slab component then mixes 1324 

with the mantle wedge, shown as lines with only two tick marks (1% and 10%) for clarity (dashed 1325 

- denotes curve for Nb-rich magmas). for . a.-b. Mixing between AOC and bulk trench sediment 1326 

with preferential release of Hf from sediment by a factor of 7. c.-d. Mixing between AOC and 1327 

bulk trench sediment with preferential release of Nd from AOC by a factor of 7. Either model 1328 

produces misfits in the Nd/Hf vs 176Hf/177Hf space (except for the high-La basalts). e.-f. Mixing 1329 

between AOC and granodiorite that have similar Nd/Hf ratios. Calc-alkaline and Nb-rich 1330 

magmas require slightly different crustal and mantle end members in isotope space. Mixing 1331 

model assumes primitive background mantle (Nd/Hf= 4.4) for Nb-rich magmas, and a residual 1332 

mantle after by 5% melt extraction for calc-alkaline series (Nd/Hf=3.9). For details see text. 1333 

 1334 

Figure 11: Idealized 87Sr/86Sr vs 143Nd/144Nd mixing model for calc-alkaline/high-La and Nb-rich 1335 

magmas, respectively, with AOC, granodiorite and mantle wedge as end members. The models 1336 

first calculate a 'bulk slab component'(AOC and bulk trench sediment, or AOC and granodiorite) 1337 

which are shown as thick lines with 10% increments. The bulk slab component then mixes with 1338 

the mantle wedge, shown as lines with only two tick marks (1% and 10%) for clarity (dashed - 1339 

denotes curve for Nb-rich magmas). A successful model for the calc-alkaline series requires a 1340 

component with increased 87Sr/86Sr, depicted here to derive from subducted AOC.  1341 

 1342 

Figure 12: Idealized 208Pb/204Pb vs. 206Pb/204Pb mixing model for a. calc-alkaline/high-La magmas,  1343 

and b. Nb-rich magmas. The models first calculate a 'bulk slab component'(AOC and bulk trench 1344 

sediment, or AOC and granodiorite) which are shown as thick lines with 10% increments (dashed 1345 

- denotes curve for Nb-rich magmas in panel b). The bulk slab component then mixes with the 1346 

mantle wedge, shown as lines with only two tick marks (1% and 10%) for clarity (dashed - 1347 

denotes curve for Nb-rich magmas). 1348 

 1349 

Figure 13: a. Percentage of slab-derived Pb in arc magmas vs. 206Pb/208Pb. b. Percentage of slab-1350 

derived Sr in arc magmas vs. 87Sr/86Sr. For calculation of slab-derived percentages see text. c. 1351 

Percentage of slab-derived Nd in arc magmas vs. 143Nd/143Nd. d. Percentage of slab-derived Hf in 1352 

arc magmas vs. 176Hf/177Hf.  1353 

 1354 

Figure 14: Cartoon of central MVB subduction setting. Thermal structure model assumes mantle 1355 

potential temperature of 1450°C and temperatures of ∼700-800°C at about 110 km beneath the 1356 

central MVB arc front, estimated from P-wave seismic tomography (Manea and Manea, 2011). 1357 
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Slab surface temperatures remains below sediment solidus (≥1050°C, Behn et al., 2011)), but are 1358 

conducive to the formation of thermochemical instabilities at the slab–mantle interface. 1359 

 1360 

Figure 15: a.-b. Th/La vs. 143Nd/144Nd, and c.-d. Nb/Ta vs. 143Nd/144Nd and mixing models for 1361 

MVB magmas and their source components. Stippled lines outlines the range of the 1362 

Acapulco/offshore granodiorites. The mixing models first calculate a 'bulk slab component' from 1363 

AOC and eroded crust (thick lines with 10% increments). The bulk slab component then mixes 1364 

with the mantle wedge, shown as lines with only two tick marks (1% and 10%) for clarity (dashed 1365 

- denotes curve for Nb-rich magmas). Averages of major Earth reservoirs (right panels) are 1366 

compiled from Plank (2004), McDonough and Sun (1995), Sun and McDonough (1989), Pfänder et 1367 

al. (2007), and Muenker et al. (2003).  1368 

 1369 

Figure 16: Nb (ppm) vs Nb/Ta of central MVB arc volcanic rocks with range of MORB from Niu 1370 

and Batiza (1997). Stippled lines mark average of Old Texcal Flow (proxy to subarc mantle wedge 1371 

prior to subduction modification).  1372 

 1373 

 1374 



Table 1: Average percentages of slab contributions of Pb, Sr, Nd and Hf to calc‐alkaline, high‐

La and Nb‐rich magmas from trace element inversion.  

 

  Sr  Pb  Nd  Hf 

calc‐alkaline magmas  87±4%  89±6%  74±8%  69±9% 

from mantle  ∼13%  ∼11%  ∼26%  ∼31% 

         

high‐La series magmas  95±2%  96±2%  93±3%  73±7% 

from mantle  ∼5%  ∼4%  ∼7%  ∼27% 

         

Nb‐rich magmas  49±10%  59±18%  47±16%  44±13% 

from mantle  ∼51%  ∼41%  ∼53%  ∼56% 

 

 

 

 

Table
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Table 2: Source components used for 143Nd/143Nd vs. 176Hf/177Hf isotope mixing models. 

 

  87Sr/86Sr  143Nd/144Nd  206Pb/208Pb  208Pb/208Pb  176Hf/177Hf 
Pb 
ppm 

Sr 
ppm 

Nd 
ppm 

Hf 
ppm  Sr/Nd  Nd/Hf  Data Sources 

Cenozoic MORB 
(AOC)  0.70350  0.51319  18.20  37.71  0.28321  0.62  123a  10.28  2.57  11.9  4.00  this study  

Bulk trench 
sediment   0.70825  0.51253  18.64  38.34  0.28290  38.9  208  28.5  2.48  7.3  11.5  (Cai et al., 2014; Plank, 2014) 

Pelagic trench 
sediment  0.70837  0.51253  18.51  38.19  0.28294  66.2  284  51.2  2.51  5.6  20.4 

(Cai et al., 2014; LaGatta, 2003; 

Verma, 1999b)  

Terrigenous  trench 
sediment  0.70858  0.51248  18.84  38.62  0.28278  20.9  179  19.8  2.43  9.1  8.15 

(Cai et al., 2014; LaGatta, 2003; 

Verma, 1999b) 

                         

calk‐alkaline/high‐La 
series                         

Background mantle 
wedge  0.70307  0.51300  18.71  38.41  0.28306  0.076  7.8  0.63  0.164  12.3  3.86 

this study; residual of primitive 

mantle from McDonough and 

Sun (1995), after 3.5% melt 

extraction 

Acapulco/offshore 
granodiorite   0.70460  0.51273  18.8  38.64  0.28291  13.6  294b  32.8  5.70  9.0  5.75  this study. 

                         

Nb‐rich series                         

Background mantle 
wedge  0.70307  0.51300  18.71  38.41  0.28306  0.15  19.9  1.25  0.283  15.9  4.42 

this study; primitive mantle 

from McDonough and Sun 

(1995) 

intraplate seamount  0.70460c  0.51273c  18.8c  38.64c  0.2829c  1.2  270  21.2  4.2  12.8  5.0 

abundance data after Niu and 

Batiza (1997), Nb>10 ppm 

 

a Model in Figure 14, uses increased Sr abundances, by factor of 3 for calc‐alkaline series (Sr= 368 ppm; Sr/Nd=36), and by a factor of 2.5 for the NEAB (Sr= 306 ppm; Sr/Nd= 30).  

b Model in Figure 14, uses increased Sr abundances, by factor of 4 (Sr= 1177 ppm; Sr/Nd=36) 

c Isotope ratios estimated from trend of Nb‐rich magmas in Sr‐Nd‐Pb‐Hf isotope space 

 

Table



Table 3. Average percentages of Pb, Sr, Nd and Hf contributed from the mantle and 

the different slab reservoirs obtained from isotope modeling. 

 

 

  Sr%  Pb%  Nd%  Hf% 

Calc‐alkaline/high‐La series         

mantle  4  14  11  14 

AOC  23  25  21  27 

Granodiorite  73  61  68  59 

         

Nb‐rich magmas         

mantle  22  24  24  25 

AOC  42  22  25  28 

Seamount  37  54  51  46 

 

 

 

Table
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Table 4: Source components used for Th/La vs. 143Nd/143Nd and Nb/Ta vs. 143Nd/143Nd mixing models. 

 
 

  143Nd/144Nd  Th ppm  La ppm  Nb ppm  Ta ppm  Th/La  Nb/Ta  Data Sources 
Cenozoic MORB 
(AOC)  0.51319  0.33  4.9  4.55  0.285  0.07  15.6 

this study  

Bulk trench 
sediment   0.51253  6.00  36.3  8.65  0.557  0.17  15.5 

(Cai et al., 2014; Plank, 2014) 

Pelagic trench 
sediment  0.51253  5.51  56.4  8.09  0.44  0.08  18.2 

(Cai et al., 2014; LaGatta, 2003; Verma, 

1999b)  

Terrigenous  trench 
sediment  0.51248  7.50  20.4  11.04  0.84  0.32  13.2 

(Cai et al., 2014; LaGatta, 2003; Verma, 

1999b) 

Acapulco/offshore 
granodiorite   0.51270‐0.51276  1.1‐13.6  15.1‐37.1  15.7‐30.9 

1.36‐

1.58 

0.07‐

0.37 

11.5‐

19.6  this study. 

                 

calk‐alkaline/high‐La 
series 

             
 

Background mantle 
wedge 

0.51300  0.0011  0.105  0.02  0.0012  0.01  16.22 

this study; residual of primitive mantle 

from McDonough and Sun (1995), after 

3.5% melt extraction 

                 

Nb‐rich magmas                 

Background mantle 
wedge  0.51300  0.0795  0.648  0.6  0.037  0.12 

16.22 

 

this study; primitive mantle from 

McDonough and Sun (1995) 

 
 

Table
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