10 research outputs found

    Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer

    Get PDF
    Altres ajuts: This work was co-finaced by the European Development Regional Fund, "A way to achieve Europe" ERDF; the Cellex Foundation; and "la Caixa" Banking Foundation (LCF/PR/PR15/ 11100003).Human tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion

    Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadHuman tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion.Health Department PERIS-project of the Catalan Government (Generalitat de Catalunya) AGAUR of the Catalan Government (Generalitat de Catalunya) Instituto de Salud Carlos III Ministerio de Economia y Competitividad (MINECO) European Union (EU) Foundation CELLEX La Caixa Foundatio

    The Altered Transcriptome and DNA Methylation Profiles of Docetaxel Resistance in Breast Cancer PDX Models

    No full text
    Taxanes are standard therapy in clinical practice for metastatic breast cancer; however, primary or acquired chemoresistance are a common cause of mortality. Breast cancer patient-derived xenografts (PDX) are powerful tools for the study of cancer biology and drug treatment response. Specific DNA methylation patterns have been associated to different breast cancer subtypes but its association with chemoresistance remains unstudied. Aiming to elucidate docetaxel resistance mechanisms, we performed genome-wide DNA methylation in breast cancer PDX models, including luminal and triple-negative breast cancer (TNBC) models sensitive to docetaxel, their matched models after emergence of chemoresistance and residual disease after short-term docetaxel treatment. We found that DNA methylation profiles from breast cancer PDX models maintain the subtype-specific methylation patterns of clinical samples. Two main DNA methylation clusters were found in TNBC PDX and remain stable during the emergence of docetaxel resistance; however, some genes/pathways were differentially methylated according to docetaxel response. A DNA methylation signature of resistance able to segregate TNBC based on chemotherapy response was identified. Transcriptomic profiling of selected sensitive/resistant pairs and integrative analysis with methylation data demonstrated correlation between some differentially methylated and expressed genes in docetaxel-resistant TNBC PDX models. Multiple gene expression changes were found after the emergence of docetaxel resistance in TNBC. DNA methylation and transcriptional changes identified between docetaxel-sensitive and -resistant TNBC PDX models or residual disease may have predictive value for chemotherapy response in TNBC. IMPLICATIONS: Subtype-specific DNA methylation patterns are maintained in breast cancer PDX models. While no global methylation changes were found, we uncovered differentially DNA methylated and expressed genes/pathways associated with the emergence of docetaxel resistance in TNBC

    Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer

    No full text
    Altres ajuts: This work was co-finaced by the European Development Regional Fund, "A way to achieve Europe" ERDF; the Cellex Foundation; and "la Caixa" Banking Foundation (LCF/PR/PR15/ 11100003).Human tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion

    RANK is a poor prognosis marker and a therapeutic target in ER-negative postmenopausal breast cancer

    Get PDF
    Despite strong preclinical data, the therapeutic benefit of the RANKL inhibitor, denosumab, in breast cancer patients, beyond the bone, is unclear. Aiming to select patients who may benefit from denosumab, we hereby analyzed RANK and RANKL protein expression in more than 2000 breast tumors (777 estrogen receptor-negative, ER-) from four independent cohorts. RANK protein expression was more frequent in ER- tumors, where it associated with poor outcome and poor response to chemotherapy. In ER- breast cancer patient-derived orthoxenografts (PDXs), RANKL inhibition reduced tumor cell proliferation and stemness, regulated tumor immunity and metabolism, and improved response to chemotherapy.Intriguingly, tumor RANK protein expression associated with poor prognosis in postmenopausal breast cancer patients, activation of NFKB signaling and modulation of immune and metabolic pathways, suggesting that RANK signaling increases after menopause. Our results demonstrate that RANK expression is an independent biomarker of poor prognosis in postmenopausal ER- breast cancer patients and support the therapeutic benefit of RANK pathway inhibitors, such as denosumab, in breast cancer patients with RANK+ ER- tumors after menopause
    corecore