8,915 research outputs found

    Ambipolar Filamentation of Turbulent Magnetic Fields : A numerical simulation

    Get PDF
    We present the results of a 2-D, two fluid (ions and neutrals) simulation of the ambipolar filamentation process, in which a magnetized, weakly ionized plasma is stirred by turbulence in the ambipolar frequency range. The higher turbulent velocity of the neutrals in the most ionized regions gives rise to a non-linear force driving them out of these regions, so that the initial ionization inhomogeneities are strongly amplified. This effect, the ambipolar filamentation, causes the ions and the magnetic flux to condense and separate from the neutrals, resulting in a filamentary structure.Comment: 8 pages, 6 figures, accepted for publication in A&

    New constraints on protostellar jet collimation from high-density gas UV tracers

    Get PDF
    The analysis of high-resolution profiles of the semiforbidden UV lines of C III](1908) and Si III](1892) in the spectra of T Tauri stars (TTSs) shows the following : (1) There is C III](1908) and Si III](1892) emission at velocities that are similar to those observed in the optical forbidden lines formed in the TTSs jets. The luminosity of the UV lines is comparable to that of the optical lines. (2) The comparison between the optical and UV light curves indicates that the C III](1908) and Si III](1892) emission of RY Tau is not associated with accretion shocks, but it is produced farther than 2 R-* from the star. (3) The profiles of the UV semiforbidden lines are significantly broader than those of the optical forbidden lines. These profiles cannot be produced in a narrow collimated beam, and they are most likely produced in a bow-shaped shock wave formed at the base of the optical jet, where the hot gas emits in a broad range of projected radial velocities. (4) The atmosphere of RU Lup contributes significantly to the Si III](1892) emission. (5) A puzzling narrow feature is observed close to the C III](1908) line. The feature is blueshifted by -260 km s(-1), which corresponds to the wind terminal velocity measured in the P Cygni profile of the Mg II (UV1) lines. Moreover, constraints are derived on the characteristics of the C III](1908) and Si III](1892) emitting region in RY Tau. It is shown that 4.7 less than or equal to log T-e less than or equal to 5.0 and 10(9) cm(-3) less than or equal to N-e less than or equal to 10(11) cm(-3) provided that the emission is produced in a collisional plasma and that the 1665 Angstrom feature observed in low-dispersion International Ultraviolet Explorer (IUE) spectra is confirmed to be O III](1665) emission produced in the wind. These very high densities are difficult to generate in the shocks produced by the magnetic pinching of centrifugally driven magnetized disk winds. The data also suggest that the shocked layer has a radius of some few stellar radii and it is closer than similar to 38 R-* to the star

    Three-Dimensional Simulations of Jets from Keplerian Disks: Self--Regulatory Stability

    Full text link
    We present the extension of previous two-dimensional simulations of the time-dependent evolution of non-relativistic outflows from the surface of Keplerian accretion disks, to three dimensions. The accretion disk itself is taken to provide a set of fixed boundary conditions for the problem. The 3-D results are consistent with the theory of steady, axisymmetric, centrifugally driven disk winds up to the Alfv\'en surface of the outflow. Beyond the Alfv\'en surface however, the jet in 3-D becomes unstable to non-axisymmetric, Kelvin-Helmholtz instabilities. We show that jets maintain their long-term stability through a self-limiting process wherein the average Alfv\'enic Mach number within the jet is maintained to order unity. This is accomplished in at least two ways. First, poloidal magnetic field is concentrated along the central axis of the jet forming a ``backbone'' in which the Alfv\'en speed is sufficiently high to reduce the average jet Alfv\'enic Mach number to unity. Second, the onset of higher order Kelvin-Helmholtz ``flute'' modes (m \ge 2) reduce the efficiency with which the jet material is accelerated, and transfer kinetic energy of the outflow into the stretched, poloidal field lines of the distorted jet. This too has the effect of increasing the Alfv\'en speed, and thus reducing the Alfv\'enic Mach number. The jet is able to survive the onset of the more destructive m=1 mode in this way. Our simulations also show that jets can acquire corkscrew, or wobbling types of geometries in this relatively stable end-state, depending on the nature of the perturbations upon them. Finally, we suggest that jets go into alternating periods of low and high activity as the disappearance of unstable modes in the sub-Alfv\'enic regime enables another cycle of acceleration to super-Alfv\'enic speeds.Comment: 57 pages, 22 figures, submitted to Ap

    Observations of T-Tauri Stars using HST-GHRS: I. Far Ultraviolet Emission Lines

    Get PDF
    We have analyzed GHRS data of eight CTTS and one WTTS. The GHRS data consists of spectral ranges 40 A wide centered on 1345, 1400, 1497, 1550, and 1900 A. These UV spectra show strong SiIV, and CIV emission, and large quantities of sharp (~40 km/s) H2 lines. All the H2 lines belong to the Lyman band and all the observed lines are single peaked and optically thin. The averages of all the H2 lines centroids for each star are negative which may indicate that they come from an outflow. We interpret the emission in H2 as being due to fluorescence, mostly by Ly_alpha, and identify seven excitation routes within 4 A of that line. We obtain column densities (10^12 to 10^15 cm^-2) and optical depths (~1 or less) for each exciting transition. We conclude that the populations are far from being in thermal equilibrium. We do not observe any lines excited from the far blue wing of Ly_alpha, which implies that the molecular features are excited by an absorbed profile. SiIV and CIV (corrected for H2 emission) have widths of ~200 km/s, and an array of centroids (blueshifted lines, centered, redshifted). These characteristics are difficult to understand in the context of current models of the accretion shock. For DR Tau we observe transient strong blueshifted emission, perhaps the a result of reconnection events in the magnetosphere. We also see evidence of multiple emission regions for the hot lines. While CIV is optically thin in most stars in our sample, SiIV is not. However, CIV is a good predictor of SiIV and H2 emission. We conclude that most of the flux in the hot lines may be due to accretion processes, but the line profiles can have multiple and variable components.Comment: 67 pages, 19 figures, Accepted in Ap

    A snapshot of cancer-associated thromboembolic disease in 2018-2019: First data from the TESEO prospective registry

    Get PDF
    BACKGROUND: The ever-growing complexity of cancer-associated thrombosis (CAT), with new antineoplastic drugs and anticoagulants, distinctive characteristics, and decisions with low levels of evidence, justifies this registry. METHOD: TESEO is a prospective registry promoted by the Spanish Society of Medical Oncology to which 34 centers contribute cases. It seeks to provide an epidemiological description of CAT in Spain. RESULTS: Participants (N=939) with CAT diagnosed between July 2018 and December 2019 were recruited. Most subjects had advanced colon (21.4%), non-small cell lung (19.2%), and breast (11.1%) cancers, treated with dual-agent chemotherapy (28.4%), monochemotherapy (14.4%), or immune checkpoint inhibitors (3.6%). Half (51%) were unsuspected events, albeit only 57.1% were truly asymptomatic. Pulmonary embolism (PE) was recorded in 571 (58.3%); in 120/571 (21.0%), there was a concurrent deep venous thromboembolism (VTE). Most initially received low molecular weight heparin (89.7%). Suspected and unsuspected VTE had an OS rate of 9.9 (95% CI, 7.3-non-computable) and 14.4 months (95% CI, 12.6-non-computable) (p=0.00038). Six-month survival was 80.9%, 55.9%, and 55.5% for unsuspected PE, unsuspected PE admitted for another reason, and suspected PE, respectively (p<0.0001). The 12-month cumulative incidence of venous rethrombosis was 7.1% (95% CI, 4.7-10.2) in stage IV vs 3.0% (95% CI, 0.9-7.1) in stages I-III. The 12-month cumulative incidence of major/clinically relevant bleeding was 9.6% (95% CI, 6.1-14.0) in the presence of risk factors. CONCLUSION: CAT continues to be a relevant problem in the era of immunotherapy and targeted therapies. The initial TESEO data highlight the evolution of CAT, with new agents and thrombotic risk factors

    C2D Spitzer-IRS spectra of disks around T Tauri stars: I. Silicate emission and grain growth

    Full text link
    Infrared ~5--35 um spectra for 40 solar-mass T Tauri stars and 7 intermediate-mass Herbig Ae stars with circumstellar disks were obtained using the Spitzer Space Telescope as part of the c2d IRS survey. This work complements prior spectroscopic studies of silicate infrared emission from disks, which were focused on intermediate-mass stars, with observations of solar-mass stars limited primarily to the 10 um region. The observed 10 and 20 um silicate feature strengths/shapes are consistent with source-to-source variations in grain size. A large fraction of the features are weak and flat, consistent with um-sized grains indicating fast grain growth (from 0.1--1.0 um in radius). In addition, approximately half of the T Tauri star spectra show crystalline silicate features near 28 and 33 um indicating significant processing when compared to interstellar grains. A few sources show large 10-to-20 um ratios and require even larger grains emitting at 20 um than at 10 um. This size difference may arise from the difference in the depth into the disk probed by the two silicate emission bands in disks where dust settling has occurred. The 10 um feature strength vs. shape trend is not correlated with age or Halpha equivalent width, suggesting that some amount of turbulent mixing and regeneration of small grains is occurring. The strength vs. shape trend is related to spectral type, however, with M stars showing significantly flatter 10 um features (larger grain sizes) than A/B stars. The connection between spectral type and grain size is interpreted in terms of the variation in the silicate emission radius as a function of stellar luminosity, but could also be indicative of other spectral-type dependent factors (e.g, X-rays, UV radiation, stellar/disk winds, etc.).Comment: 17 pages, 13 figures, accepted for publication by ApJ, formatted with emulateapj using revtex4 v4.

    SPIRE imaging of M82: cool dust in the wind and tidal streams

    Get PDF
    M82 is a unique representative of a whole class of galaxies, starbursts with superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its interaction with the M81 group has stripped a significant portion of its interstellar medium from its disk. SPIRE maps now afford better characterization of the far-infrared emission from cool dust outside the disk, and sketch a far more complete picture of its mass distribution and energetics than previously possible. They show emission coincident in projection with the starburst wind and in a large halo, much more extended than the PAH band emission seen with Spitzer. Some complex substructures coincide with the brightest PAH filaments, and others with tidal streams seen in atomic hydrogen. We subtract the far-infrared emission of the starburst and underlying disk from the maps, and derive spatially-resolved far-infrared colors for the wind and halo. We interpret the results in terms of dust mass, dust temperature, and global physical conditions. In particular, we examine variations in the dust physical properties as a function of distance from the center and the wind polar axis, and conclude that more than two thirds of the extraplanar dust has been removed by tidal interaction, and not entrained by the starburst wind.Comment: accepted in A&A Herschel special issu
    • 

    corecore