2,881 research outputs found

    Analysis Of The Cyclability Of Lithium-polymer Batteries

    Get PDF
    Comunicación y póster en congresoLithium ion batteries and similar energy storage devices have an increasing importance for the modern society as they are present in many portable electronic devices and have perspectives in the fields of electric vehicles and renewable energy accumulation. Herein, we present results from charge and discharge cycles on batteries under controlled conditions. The cyclability of commercial lithium-polymer pouch batteries under different charge/discharge rates and temperatures was studied. Based on the results, the relationship between the state of charge and the cell voltage was obtained, as well as degradation of the cells, i.e., the decrease of the energy capacity after a number of cycles. The experimental results were compared with simulations based on Newman's model for Lithium Ion Batteries, carried out using the COMSOL Multiphysics® software. The batteries and fuel cell and the heat transfer modules were use to couple between the temperature and the electrochemical interactions. The results show the correlation between temperature, C-rate and degradation in lithium ion batteries. It is specially remarkable the decrease of the apparent capacity of batteries at low temperatures, and the increase of the degradation at higher temperatures. These results are essential for the design of mechanisms that could prevent battery failure.The authors acknowledge the financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045, and the "Plan Propio de Investigación y Transferencia de la Universidad de Málaga", code: PPIT.UMA.B5.2018/17

    Ratchet, pawl and spring Brownian motor

    Full text link
    We present a model for a thermal Brownian motor based on Feynman's famous ratchet and pawl device. Its main feature is that the ratchet and the pawl are in different thermal baths and connected by an harmonic spring. We simulate its dynamics, explore its main features and also derive an approximate analytical solution for the mean velocity as a function of the external torque applied and the temperatures of the baths. Such theoretical predictions and the results from numerical simulations agree within the ranges of the approximations performed.Comment: Submitted to Physica

    Modelling actin polymerization: the effect on confined cell migration

    Get PDF
    The aim of this work is to model cell motility under conditions of mechanical confinement. This cell migration mode may occur in extravasation of tumour and neutrophil-like cells. Cell migration is the result of the complex action of different forces exerted by the interplay between myosin contractility forces and actin processes. Here, we propose and implement a finite element model of the confined migration of a single cell. In this model, we consider the effects of actin and myosin in cell motility. Both filament and globular actin are modelled. We model the cell considering cytoplasm and nucleus with different mechanical properties. The migration speed in the simulation is around 0.1 µm/min, which is in agreement with existing literature. From our simulation, we observe that the nucleus size has an important role in cell migration inside the channel. In the simulation the cell moves further when the nucleus is smaller. However, this speed is less sensitive to nucleus stiffness. The results show that the cell displacement is lower when the nucleus is stiffer. The degree of adhesion between the channel walls and the cell is also very important in confined migration. We observe an increment of cell velocity when the friction coefficient is higher

    Synthesis and structural characterization of the luminescent tetranuclear complex [NBu4]2[(C6F5)6(μ-OH)3Pt3HgCl] with Pt-Hg bonds unsupported by covalent bridging ligands

    Get PDF
    The tetranuclear cluster [NBu4]2[(C6F5)6(-OH)3Pt3HgCl] is obtained by reacting the mononuclear platinum complex [NBu4]2[Pt(C6F5)3Cl] with Hg(NO3)2 followed by appropriate work-up. The X-ray study reveals that the compound possesses three donor-acceptor PtHg bonds unsupported by any covalent bridges. The crystallographic parameters are: monoclinic, P21/n with a=11.9770(10), b=26.092(3), c=24.991(2) Å, =92.900(10)°, Dcalc=2.009 Mg m-3 for Z=4 and R=0.076 utilizing 13 657 data with Fo22(Fo2). The UV-vis spectrum of the solid sample has been studied revealing that the compound is strongly luminescent. © 2000 Elsevier Science S.A

    From E_8 to F via T

    Full text link
    We argue that T-duality and F-theory appear automatically in the E_8 gauge bundle perspective of M-theory. The 11-dimensional supergravity four-form determines an E_8 bundle. If we compactify on a two-torus, this data specifies an LLE_8 bundle where LG is a centrally-extended loopgroup of G. If one of the circles of the torus is smaller than sqrt(alpha') then it is also smaller than a nontrivial circle S in the LLE_8 fiber and so a dimensional reduction on the total space of the bundle is not valid. We conjecture that S is the circle on which the T-dual type IIB theory is compactified, with the aforementioned torus playing the role of the F-theory torus. As tests we reproduce the T-dualities between NS5-branes and KK-monopoles, as well as D6 and D7-branes where we find the desired F-theory monodromy. Using Hull's proposal for massive IIA, this realization of T-duality allows us to confirm that the Romans mass is the central extension of our LE_8. In addition this construction immediately reproduces the conjectured formula for global topology change from T-duality with H-flux.Comment: 25 pages, 4 eps figure

    Annex 1 - Glossary

    Get PDF
    This glossary defines some specific terms as the Lead Authors intend them to be interpreted in the context of this report

    Chemical modeling for pH prediction of acidified musts with gypsum and tartaric acid in warm regions

    Get PDF
    Winemaking of musts acidified with up to 3 g/L of gypsum (CaSO4 2H2O) and tartaric acid, both individually and in combination, as well as a chemical modeling have been carried out to study the behaviour of these compounds as acidifiers. Prior to fermentation gypsum and tartaric acid reduce the pH by 0.12 and 0.17 pH units/g/L, respectively, but while gypsum does not increase the total acidity and reduces buffering power, tartaric acid shows the opposite behaviour. When these compounds were used in combination, the doses of tartaric acid necessary to reach a suitable pH were reduced. Calcium concentrations increase considerably in gypsum-acidified must, although they fell markedly after fermentation over time. Sulfate concentrations also increased, although with doses of 2 g/L they were lower than the maximum permitted level (2.5 g/L). Chemical modeling gave good results and the errors in pH predictions were less than 5% in almost all case
    corecore