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1. Introduction 

Fish rhabdoviral infections, specially those caused by novirhabdoviruses, can be tackled 

with commertial DNA vaccines such as the one against infectious haematopoietic necrosis 

virus (IHNV) (Salonius et al., 2007). Nevertheless, rhabdoviral diseases continue to pose a 

considerable threat to aquaculture because a number of practical problems regarding 

vaccination remain unsolved (for instance, mass delivery methods for small fish and 

requirements for safer vectors). Furthermore, some fish rhabdoviroses appear to be 

spreading to wild-type species.  

Theoretically, efficient DNA vaccines could be used for any fish pathogen, such as other 

viruses (nodaviruses and orthomyxoviruses, for instance), bacteria and parasites. However, in 

practice, many fish DNA vaccines do not perform satisfactorily in most other pathogens than 

novirhabdoviruses. Therefore, fish novirhabdoviral vaccines are suitable models in which to 

study why similar DNA vaccines have not been successfully developed for other viruses 

(Gomez-Casado et al., 2011; Kurath, 2008). Those studies include the use of microarrays. 

To date, effective vaccines against fish rhabdoviruses have been achieved simply by using 

their glycoprotein G gene (Einer-Jensen et al., 2009; Kurath, 2008; Kurath et al., 2007; 

Lorenzen, 2000; Lorenzen et al., 2009; Lorenzen & LaPatra, 2005). The glycoprotein G of 

rhabdoviruses is a widely studied antigen in fish (Bearzotti et al., 1995; LaPatra et al., 1994; 

McAllister et al., 1974; Vestergaard-Jorgensen, 1972; Winton et al., 1988) and its crystal 

structure has recently been elucidated in a similar mammalian rhabdovirus (Roche et al., 

2006; Roche et al., 2007). 

Most of our present knowledge about the factors that affect DNA vaccination efficacy in fish 

(vaccine dosage, delivery route, water quality, host species/size, time to challenge, severity 

of challenge, viral strain, etc) derives from work on fish rhabdoviral models (Kurath, 2008). 

Thus, the first fish DNA vaccines against IHNV were reported in 1996 (Anderson et al., 

1996a; Anderson et al., 1996b) and against viral haemorrhagic septicemia virus (VHSV) in 

1998 (Lorenzen et al., 1998). In 2005, Vical-Aqua Health Ltd. of Canada (Novartis APEX-
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IHN) received authorization to commertialize an IHNV DNA vaccine (Salonius et al., 2007). 

In support of their licensing, millions of salmon were vaccinated in British Columbia in 2004 

and 2005. However, there are no reports on the efficacy of this vaccine against natural viral 

challenges (Kurath, 2008; Salonius et al., 2007).  

When injected intramuscularly in each fish, plasmid-based G glycoprotein-coding 
rhabdoviral vaccines induce long-term (months) specific immunity, preceded by an early 
(4-8 days) non-specific protective response (Kim et al., 2000; Lorenzen, 2000; Lorenzen et 
al., 2002). Non-specific short-term protective immunity results from the induction of 
interferon-mx and related genes, while specific long-term protection may have this effect 
as a result of the induction of G glycoprotein gene-specific antibody or cellular responses 
(Kurath et al., 2007). However, most changes in gene expression that occur with resistance 
mechanisms in short-term and long-term immunity are not fully understood (Goetz & 
MacKenzie, 2008). Furthermore, more basic knowledge on mucosal immunity is required 
to move rhabdoviral DNA vaccines from the laboratory into the field, as existing vaccines 
still require either intramuscular injection in individual fish or stronger (adjuvanted) 
immune responses to facilitate mass delivery methods, such as those using oral- 
(delasHeras et al., 2010; Tian et al., 2008) or ultrasound-aided (Fernandez-Alonso et al., 
2001) immunization. Studies using microarrays could greatly contribute to furthering this 
basic knowledge (Secombes, 2008).  

Theoretically, for best performance an optimal vaccination should mimic viral infection 
steps such as entry and replication. For instance, since the entry of rhabdoviruses would be 
first detected by cellular membrane toll-like receptors (TLRs) through the G glycoprotein 
and their later cytoplasmic replication by endosomal TLRs through dsRNA intermediates, 
the question arises as to whether DNA vaccines should include not only the G glycoprotein 
gene but also dsRNA intermediates (ie.: RNA hairpins). Again, new data obtained from 
microarrays could shed some light on these possibilities. 

As established by quantitative RT-qPCR before the advent of microarrays, 4 to 8 days after 
DNA vaccination by intramuscular injection, gene expression by fish haematopoietic organs 
showed an increase in interferon-inducible mx (Acosta et al., 2005; Boudinot et al., 1998; 
McLauchlan et al., 2003; Purcell et al., 2004; Robertsen, 2008; Tafalla et al., 2007), virally-
induced genes (Vig) (Boudinot et al., 1999; Boudinot et al., 2001) and mhc and tcr genes 
(Takano et al., 2004). 

In this context, the recent availability of fish microarrays (Martin et al., 2008), which allow 
the expression profiling of thousands of genes simultaneously, has provided new 
opportunities to further study fish immunological responses in several rhabdovirus/fish 
models.  

Expressed sequence tag (EST)-based microarrays of the Japanese flounder, trout, salmon 
and zebrafish have been used in gene-discovery efforts. These studies included infections 
with IHNV (MacKenzie et al., 2008; Purcell et al., 2006a), VHSV(Byon et al., 2005; Byon et al., 
2006; Encinas et al., 2010) and hirame rhabdovirus (HRV)(Yasuike et al., 2007) (Table 
1). However, no studies have reported on the largest microarrays that have recently become 
available, such as the ~ 32 K cDNA of salmonids (von Schalburg et al., 2008) and the ~ 37 K 
60-mer oligos of trout (Salem et al., 2008), most probably due to the complexity of the 
interpretation of the data. 
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Fish name 
Genus
species 

Size
, ~K Type Name References 

Flatfish      

Japanese 
 flounder 

Paralichthys 
olivaceus 

1 cDNA HRV-infected 
Leukocytes 

(Aoki et al., 1999) 
(Nam et al., 2000) 

European  
flounder 

Platichthys 
flesus 

3 cDNA GENIPOL (Diab et al., 2008) 

Atlantic 
 halibut 

Hipppoglossus 
hyppoglossus 

7 oligo --- (Douglas et al., 2008) 

Turbot Scophthalmus 
maximus 

3 oligo Aeromonas-
infected organs 

(Pardo et al., 2009) 

Salmonids      

Atlantic  
salmon 

Salmo 
salar 

16 cDNA TRAITS-SGP 
 

(Salem et al., 2008) 

Atlantic 
 salmon 

salmonids 32 cDNA GRASP (von Schalburg et al., 
2008) 

(Koop et al., 2008) 

Rainbow  
trout 

Oncorhynchus 
mykiss 

37 oligo 
60mer 

RTGI 
 

(Salem et al., 2008) 

Other species      

Zebrafish Danio 
rerio 

40 oligo 
60mer 

---- Agilent (commertial) 

GENIPOL, http://www.pleuronectes.ca. GRASP, http://web.uvic.ca/grasp/microarray/array.html. 
TIGR, http://biocomp.dfci.harward.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=salmon. TRAITS-SGP, 
http://www.traitsdb.stir.ac.uk. RTGI, http://compbio.dfci.harvard.edu/tgi/cgi-
bin/tgi/gimain.pl?gudb=r_trout. Zebrafish, http://www.ensembl.org/Danio_rerio/Info/Index and 
Sanger zebrafish project http://www.sanger.ac.uk/Projects/D_rerio/. 

Table 1. Summary of rhabdoviral-sensitive fish species with microarrays in different stages 
of development. 

In this review we focus on the data published on the use of microarrays for the identification 

of rhabdoviral-induced genes with properties that make them candidate adjuvants for the 

improvement of fish DNA vaccines. 

2. Vertebrate viral infections, vaccination and adjuvants 

Pathogen-associated molecular patterns (PAMPs) are sensed in higher vertebrates by 
pattern recognition receptors (PRRs). There are several PRR classes (retinoic acid-inducible 
gene-like helicases, nucleotide-binding oligomerization domain-like receptor, peptide 
recognition proteins, etc). The most studied PRRs belong to the family of toll like receptors 
(TLRs) (Manicassamy & Pulendran, 2009). When expressed at the cell (TLRs numbers 
1,2,4,5,6,10,11) and at the endosomal (3,7,8,9) membranes, TLRs detect PAMPs outside and 
inside the cells, respectively. Most natural infections start through mucosal surfaces that 
contain dendritic cells (DCs) specialized in sensing PAMPs through their cell-specific TLRs-
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enriched membranes (Iwasaki, 2007a; Iwasaki, 2007b; Thompson & Iwasaki, 2008). After 
recognition of their corresponding PAMP, TLRs generates TLR-mediated signals, these 
resulting in a complex signalling network whose integration by the host determines the final 
immune response (Manicassamy & Pulendran, 2009).  

Since the most effective vaccinations are obtained after infections with live or attenuated 
pathogens, several PAMPs from a unique pathogen (such as external glycoproteins and 
internally synthesized dsRNA/glycoproteins in rhabdoviruses) simultaneously stimulate 
several TLRs. In contrast, dead recombinant protein subunits and antigenic genes contain 
fewer PAMPs than live/attenuated pathogens. Nevertheless, single PAMPs have also been 
used to immunize against live pathogens, mostly with the help of adjuvants to replace the 
missing PAMPs. Therefore, the purpose of vaccine adjuvants is to increase the immune 
responses of otherwise weak individual PAMPs.  

Most adjuvants in mammals are believed to target professional antigen-presenting cells, 
such as tissue DCs (De Gregorio et al., 2009; Lambrecht et al., 2009). The expression patterns 
of pro-inflammatory genes such as cytokines, chemokines, MHC and co-estimulatory 
molecules are altered in adjuvant-targeted DCs (Figure 1). Subsequently, maturing DCs 
migrate to lymph nodes and activate naive CD4+ (helper) and CD8+ (cytotoxic) T cells to 
produce antigen-specific antibodies, cytotoxic cells, antimicrobial peptides and regulatory 
cytokines (Craig et al., 2009; Longhi et al., 2009; Manicassamy & Pulendran, 2009; Secombes, 
2008). DCs also process PAMPs into peptides for presentation onto major histocompatibility 
(mhc) molecules to T cell receptors (tcr). Thus DCs are crucial for both adjuvant effects and 
innate/adaptive immune responses (Figure 1).  

Although most PAMP-derived vaccine adjuvants act through TLRs on mammalian DCs 

(Figure 1), other internal adjuvants, such as hmgb1 released from lysed cells, exert their action 

through cell damage molecules (Lambrecht et al., 2009). Artifitial TLR-independent adjuvants, 

such as those derived from particulate compounds administered together with mammalian 

vaccines (mineral salts, liposomes, microparticles, saponins, and emulsions) either increase 

antigen persistence or uptake by DCs. Traditionally, vaccine adjuvants have been empirically 

identified as enhancers of antibody responses to a co-administered antigen. However, new 

adjuvant candidates have also been found among molecules of the signalling cascades of DC 

activation. According to a recent review (Secombes, 2008), the molecules with potential 

capacity to act as fish vaccine adjuvants might be found among: i) cytokine/chemokine 

molecules; ii) co-stimulatory cluster differentiation (cd) antigen receptors; and iii) blocking 

molecules, which might inhibit negative regulators. Microarray analysis of rhabdoviral fish 

immunizations have identified some of these molecules, as it will be reviewed here.  

3. Microarrays in the study of the flatfish/HRV/VHSV models 

Traditional sequencing, annotation and estimation of frequencies of each rhabdovirally-
induced transcript in flatfish, is one of the strategies designed to identify genes transcribed 
after rhabdoviral infections (pathogen-induced gene approach)(Aoki et al., 2011). Thus, the 
first attempts to identify HRV-induced genes were made in the Japanese flounder 
Paralichthys olivaceus by sequencing 300-596 expressed sequence tag (EST) clones from 
leukocytes 2-5 days after infection. The frequencies of each EST were estimated within a 
short 1 to 10 range (Aoki et al., 1999; Nam et al., 2000).  
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Fig. 1. Scheme of possible mechanisms of adjuvanticity. Modified from several published 
schemes (De Gregorio et al., 2009; Manicassamy & Pulendran, 2009; Secombes, 2008). 
External incoming or internally synthesized rhabdoviral molecules (dsRNA, glycoprotein G, 
other viral proteins, etc) activate dendritic cells (DCs). These recognize rhabdoviral 
molecules and are activated either through toll-like receptors (TLRs) or cytokines produced 
by other cells (monocytes, granulocytes, macrophages, mast cells, natural killer cells, 
stromal cells, muscle cells, etc). Each combination of rhabdoviral molecules induces 
simultaneous stimulation of DCs to induce the expression of secreted cytokines and 
costimulatory membrane cds. The induced membrane cds, together with other signals (blue), 
induce differentiation of cd4+ cells to T helper cells (Th1, Th2, Th17 and/or Threg). Each 
differentiated Th cell produces a series of cytokines (red), which are required to make 
antibodies, cytotoxic lymphocytes, antimicrobial peptides and molecules involved in the 
regulation of other Ths. Theoretically, any of the up- or down-regulatory molecules that 
increase defensive responses could be candidate molecular adjuvants for vaccines.  
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The new mass-sequencing technologies, such as those offered by the Genome Sequencer 
FLX (454 Life Sciences, Branford, CT, USA), Illumina Solexa (Illumina Inc., San Diego, CA, 
USA) or ABI SOLiD (Applied Biosystems, Foster City, CA, USA), could improve the 
pathogen-induced transcript frequency-estimation strategy. Thus the mass-sequencing 
technologies produce millions of sequences per run, facilitating significant statistical data for 
the quantitation of each sequence frequency. However correct annotation of such a mass of 
new sequences continues to be a problem (Goetz & MacKenzie, 2008). For instance, of 58 
million cDNA sequences of ~ 100 bp from largemouth bass, only 31391 unique sequences 
could be annotated (Garcia-Reyero et al., 2008). Although, the recent production of longer 
sequence sizes (200–400 bp), will facilitate their annotation, comparison of transcripts 
from many samples by this ultra-high-throughput sequencing technology is still not 
economically feasible. Massive sequencing could be used as a first approach, while a more 
focused microarray developed with selected genes could then be used for quantification of 
larger numbers of samples (Goetz & MacKenzie, 2008). 

Japanese flounder EST-derived cDNA microarrays were applied to in vitro kidney cell 
cultures 3-6 h after HRV infection (Kurobe et al., 2005). The number of expressed transcripts 
changed in 20.8 % of the genes after HRV infection. The 91 immune-related genes of the 
microarray were preliminarily categorized into 8 clusters on the basis of their known pattern 
of gene expression. After 3 h of HRV infection, several genes included in the chemotaxis, 
apoptosis, cell growth and antigen-presenting clusters were increased while the expression 
of some genes, including mx, decreased. Among the genes of unknown function that 
changed after HRV infection, 13 showed a similar response profile to that of the genes of 
known function mentioned above. This observation may be indicative of their association. 

Improved versions of Japanese flounder EST-derived cDNA microarrays (779 spots 
containing 228 immune-related genes) were used for in vivo differential gene expression 
after intramuscular injection of DNA vaccines containing the G gene of VHSV (Byon et al., 
2006) and/or HRV (Yasuike et al., 2007). The differential expression of their transcripts was 
studied in kidney tissue 1, 3, 7 and 21 days after vaccination. The greatest number of 
differentially expressed genes (Figure 2) was observed 3 days after injection (91.4 % were 
increased, of which 31 % were known genes). Genes with increased 
expression/transcription include those related to the non-specific immune responses, such 
as tnf, il1r, ccr, and mx, transcription factors, and even a few genes associated with the late 
specific antibody response, such as cd20. Many interferon-inducible genes including mx and 
interferon regulatory genes were the most strongly induced genes 3 and 7 days after 
injection. The expression of a number of unknown genes was also increased(Aoki et al., 
2011). Among these, the LB3(8) gene increased a maximum of 56-fold 3 days after infection 
and then remained increased during one week (Byon et al., 2005). 

Later versions of the Japanese flounder EST-derived cDNA microarrays of up to 1187 
unique flounder ESTs (691 identified genes) were then used to compare the injection of 
recombinant G protein (non-protective) with the G gene (protective) (Byon et al., 2006). A 
number of IFN-related genes (including the unknown LB3(8)) and mx increased 7 days after 
injection, thereby confirming the observations made in previous studies using reverse 
transcriptase-quantitative polymerase chain reaction (RT-qPCR) (Acosta et al., 2005; 
Robertsen, 2008). Further studies included differential gene expression in kidneys from 
Japanese flounder injected with the HRV G gene (protective) in comparison with the N gene  
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Fig. 2. Number of differentially expressed genes after rhabdoviral immunization. Genes with 
increase expression were defined as those genes with more than 2-fold increase in expression. 
ip, intraperitoneal injection. im, intramuscular injection. imm, immersion. Flounder, Japanese 
flounder, Paralichthys olivaceus. Trout, rainbow trout, Oncorhynchus mykiss. Zebrafish, Danio 
rerio. *, number of unique sequences or features and type of microarray (cDNA or oligo DNA). 
HRV, hirame rhabdovirus. IHNV, infectious haematopoietic necrosis virus. VHSV, viral 
haemorragic septicemia virus. ▲, infection-by-injection of trout with the IHNV G gene and 
expression on head kidney with p<0.01 (MacKenzie et al., 2008).●, Infection-by-immersion of 
zebrafish with VHSV and expression on fins (Encinas et al., 2010). ■, VHSV infection-by-
immersion of zebrafish and expression in internal organs (head kidney, liver and spleeen) 
(Encinas et al., 2010). □, Injection of trout with the IHNV G gene and expression in muscle 
tissue with p>0.01 (Purcell et al., 2006b). ∆, injection of Japanese flounder with the HRV G gene 
and expression in head kidney (Yasuike et al., 2007). ○, Injection of Japanese flounder with the 
VHSV G gene and expression in head kidney (Byon et al., 2006). 

(non protective). Results confirmed that the IFN-inducible genes, LB3(8) and mx, were also 
increased 7 days after vaccination but only when the G gene was used (Yasuike et al., 2007). 
Furthermore, it was shown that the LB3(8) gene has an homologous domain to that of a 
mammal IFN-inducible protein. Thus, this gene is an example of how new genes involved in 
rhabdoviral immunization can be discovered by the microarray approach. 

However, in all the series of experiments on flounder commented above, only transcripts 

from pooled organs from 3-5 fish were compared. Biological replicates were not reported 

and therefore statistical biological variation could not be estimated. Furthermore, the 

number of genes in the microarrays were relatively small and their collected data has not 
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been deposited in any known banks to allow for independent or comparative analysis. 

Nevertheless, two main conclusions can be drawn from these experiments. Firstly, the 

largest number of differentially expressed kidney genes after fish rhabdoviral (VHSV or 

HRV) immunization-by-injection occurs 2-3 days after vaccination (Figure 2) and, secondly, 

IFN-induced gene responses are stimulated after 3-7 days (Byon et al., 2005; Byon et al., 

2006; Kurobe et al., 2005).  

In these earliest experimentations, microarrays based on cDNAs (100-500-mer) rather than 

oligos (60-70-mer) were used. Because one of the greatest concerns with cDNA arrays is 
cross-hybridization between similar genes or between repeated elements of different genes 

as a result of the pseudotetraploidy of many fish, the use of oligo microarrays would 
increase specificity (von Schalburg et al., 2008). However, in contrast to cDNA microarrays, 

oligo microarrays have a poorer performance when used for other related species. The 
current tendency appears to favour the use of the former. Thus, by using oligo microarrays, 

the printing layouts, total number of sequences and number of sequence replicates can be 
modified to meet any formats. Furthermore, oligo microarrays do not required maintenance 

of collections of bacterial clones coding for cDNAs. In addition, oligonucleotides can be 
selected and used in a range of various formats suitable for each experimental design. 

Improved sensitivity, increased dynamic range, lower variance and fewer outliers have also 
been demonstrated when using oligo rather than cDNA microarrays. Correlation between 

cDNA and oligo microarray results has been demonstrated, although some discrepancies 

have also been reported (Salem et al., 2008). High density oligo microarrays have been 
developed in other fish such as salmonids (von Schalburg et al., 2008), rainbow trout (Dios 

et al., 2008; Salem et al., 2008) and zebrafish (Cameron et al., 2005) (Table 1). 

4. Microarrays in the study of the salmonid/IHNV/VHSV models 

Large-scale genomic projects for salmon have been initiated by groups in Canada, the USA, 
the UK, Norway and France. As a result there are many physical and genetic maps, large 
collections of ESTs and a growing number of genomic sequences and derived microarrays. 
Thus three projects have developed salmonid microarrays. The first salmonid 16K cDNA 
microaarray appeared in 2004. This array was developed by the Genomic Research on 
Atlantic Salmon Project (GRASP)(von Schalburg et al., 2005a) and led to the most recent 32K 
cDNA (von Schalburg et al., 2008) and the first 5K oligo DNA of 70-mer (Koop et al., 2008) 
microarrays. The high sequence similarity (~ 86 %) between salmonids (9 genera and 68 
species) indicates that cDNA microarrays may be suitable for studies involving any member 
of this fish family. Transcriptome Analysis of Important Traits of Salmon (TRAITS) and the 
Norwegian Salmon Genome Project (SGP) also developed a 16K cDNA microarray 
(http://www.abdn.sfirc/salmon) based on two independent collections of their bacterial 
clones kept in ARK, Genomics Facility at Roslin Institute, UK and at SGP Genetics 
Laboratory at the University of Oslo, respectively. The TRAITS-SGP cDNA array was 
obtained from ESTs from 15 tissues (pathogen-induced libraries, trait-specific substractive 
EST, starvation-induced libraries, diet-response libraries, smoltification-response libraries 
and well-known genes). This array was conceived as a preliminary tool to develop an oligo 
microarray for routine health monitoring of Atlantic salmon. The first results found some 
artefactual expression patterns caused by cross-hybridization of similar transcripts and 
underlined the greater relevance of biological over technical replicates (Taggart et al., 2008).  
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By using all the tentative consensus sequences available at the Rainbow Trout Gene Index 
(RTGI) data base, a 37K oligo microarray was constructed (Salem et al., 2008), which is 
available at Agilent (design number 16271, deposited on the GEO with the GPL6018 
number). The new rainbow trout (Oncorhynchus mykiss) high-density, oligonucleotide 
microarray was developed using 37394 specific 60-mer oligonucleotide probes assembled 
from 244984 ESTs from 12 tissues (http://compbio.dfci.harvard.edu/tgi/cgi-
bin/tgi/gimain.pl?gudb¼r_trout). The specificity of each probe was checked for possible 
non-specific mRNA cross-hybridization by comparing all individual probes with all 
rainbow trout transcriptome sequences. Approximately 91 % of the sequences used for this 
microarray matched a previously annotated sequence in the GenBank. 

Few attempts have been made to use these microarrays to study the rhabdoviral 
immunization of salmonids. In homozygous trout, the 16 K cDNA GRASP microarray was 
used to profile 7-day muscle transcripts after intramuscular injection of the IHNV G gene 
(Purcell et al., 2006a; von Schalburg et al., 2005b). After immunization, irf3, mx, vig1, and 
vig8 transcripts were increased (Purcell et al., 2006a). Genes associated with antigen-
presenting cells, lymphocytes, leukocytes, inflammation, antigen presentation, and 
interferon pathways were also augmented. The increased levels of transcripts associated 
with type I IFN pathways in systemic organs (gill, spleen and kidney) were corroborated by 
RT-qPCR. These observations confirmed that, when intramuscularly injected, the host-
expressed viral G gene induces a systemic non-specific type 1 IFN innate immune response. 

Using a 1.8K cDNA salmonid microarray, comparison of infection-by-injection with IHNV 

and attenuated IHNV in rainbow trout after 1 and 3 days showed an IHNV-dependent 

change in differential transcription in kidney towards adaptive immunity genes (MacKenzie 

et al., 2008). Thus, the rapid spread of the IHNV infection inhibited tnfa, mhc1, and several 

other gene markers while favouring mhc2 and ig responses. The molecular mechanism for 

the development of late (months) specific cytotoxic T or B cell-mediated humoral responses 

has not been addressed by means of microarrays (Kurath, 2008; Kurath et al., 2006). 

More recently, trout families with low (32% survival following challenge) and high 
susceptibility to VHSV (18% survival following challenge) were infected with VHSV by bath 
exposure and transcriptional data from internal organs were analyzed with the 16K GRASP 
microarray from day 3 post-challenge (Jorgensen et al., 2011). In total, 939 genes were 
differentially expressed between infected and non-infected fish. The genes increased in 
infected fish belonged to the following categories: stress and defence response, NFkappaB 
signal transduction, response to non-self, antigen processing and presentation, and 
proteasome complexes. Most were also increased among the 642 differentially expressed 
genes in the low-susceptibility trout family but not among the 556 differentially expressed 
genes in the high-susceptibility family. These results suggest that the innate immune system 
of internal organs plays a crucial role in eliciting an effective immune response to VHSV 
infection in rainbow trout (Jorgensen et al., 2011).  

5. Microarrays in the study of the VHSV/zebrafish model 

The zebrafish Danio rerio is one of the most suitable models in which to carry out microarray 

studies because, compared to other fish, its genome sequence is one of the most advanced. 

Furthermore, ~ 40 K annotated quantitative polymerase chain reaction (qPCR) arrays and 
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annotated oligo microarrays are available. In addition, large-scale experimentation with 

zebrafish is easier than with other fish models and zebrafish are susceptible to several 

viruses, most of these belonging to the fish rhabdoviral family (Sullivan & Kim, 2008). Of 

these, VHSV (Novoa et al., 2006) was chosen in a recent study using microarrays (Encinas et 

al., 2010) over IHNV (LaPatra et al., 2000), snake-head rhabdovirus (SHRV)(Phelan et al., 

2005) and spring viremia of carp (SVC)(Sanders et al., 2003), because only in the 

VHSV/zebrafish model have infection-by-immersion (the natural route of infection) and 

successful vaccination been described (Novoa et al., 2006).  

Damage and epithelial cell death immediately after VHSV infection in the surface portals of 
entry of these viruses, such as the fins (Harmache et al., 2006), should alert surrounding cells 
to promote epithelial cell division to replace dead cells, recruit inflammatory cells to the 
infection site, and send signals to internal immune organs. However, viral-induced signals 
to inhibit the most relevant host responses have also been detected. Detection of natural 
early responses may contribute to identifying vaccine adjuvants. Thus, the expression of the 
636 immune-related transcripts that were increased after VHSV infection, as estimated by 
hybridization to oligo microarrays (confirmed by RT-qPCR arrays), was higher in fins than 
in organs. In contrast, the number of decreased transcripts was higher in organs than in fins 
(Figure 3). Therefore, an upregulated response of immune-related genes was greatest in fin 
tissues, while a downregulated response was most detected in the internal organ responses. 
The latter might be targets of viral inhibitory signals early after infection (Encinas et al., 
2010). These results showed that 2 days after infection-by-immersion, VHSV had not yet 
caused an strong response from zebrafish internal organs, which contrasts with reports in 
other fish at later times after infection-by-injection (such as ifn1, mx, il1b, tnfa, etc) (Acosta et 
al., 2006; Samuel, 2001; Tafalla et al., 2007; Tafalla et al., 2005) or infection-by-immersion 
(Jorgensen et al., 2011; Zhang et al., 2009). 

The zebrafish are refractory to rhabdoviral infection-by-immersion at high temperatures or 
without acclimatation to low temperatures with IHNV (LaPatra et al., 2000), VHSV (Novoa 
et al., 2006) or SVC (Sanders et al., 2003). Therefore, a temperature-dependent response 
mechanism(s) that inhibits rhabdoviral infection and spread may occur. While these 
preliminary findings shed some light on the earliest effects of VHSV infection at the 
molecular level, some of the new immune-related genes identified might be suitable 
candidate adjuvants for fish vaccines (Rajcani et al., 2005; Secombes, 2008).  

6. Comparative microarray study of fish/rhabdoviral models 

To best detect innate immune responses, early times after rhabdoviral infection should be 
studied. Thus, according to the data obtained from flatfish, salmonid and zebrafish studies, 
the maximal number of >2-fold differentially expressed genes in microarrays was detected 
2-3 days after rhabdoviral infection (Aoki et al., 1999; Byon et al., 2005; Byon et al., 2006; 
Kurobe et al., 2005; MacKenzie et al., 2008; Nam et al., 2000; Purcell et al., 2006a; von 
Schalburg et al., 2005b; Yasuike et al., 2007) (Figure 2). 

Table 2 shows a list of some of the differentially transcribed immune-related genes detected 
using microarrays after rhabdoviral immunization, independently of immunization 
mechanism, fish species, rhabdoviruses and organs. Among the gene list, ifn and irf -related 
genes were expected to be present; however, their presence was scarce. As with many other  
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Fig. 3. Comparison of the number of differentially expressed genes 2 days after VHSV 
infection in zebrafish fins and organs (modified from Encinas et al., 2010). Groups of 10 
zebrafish (Danio rerio) were infected with VHSV. To perform the hybridization to oligo 
microarrays, 636 selected immune-related sequences from the 44K microarray (Appligene) 
were used to analyze mRNA levels. Normalization was made with the ribosomal 
phosphoprotein p0 (rplp0) gene. Folds were calculated by the following formula: mRNA 
levels in VHSV-infected zebrafish / mRNA levels in non-infected zebrafish. The total 
number of genes increasing (+) or decreasing (-) expression > 2-fold and p<0.05 was 
represented as the percentage of the total number of immune-related genes assayed (n = 4). 
Percentages were calculated by the formula, 100 x the number of differentially expressed 
genes / total number of immune-related genes assayed (Encinas et al., 2010).  

viruses and host species, an increase in ifn1 expression is one of the first responses to the 
injection of any DNA vaccine (Acosta et al., 2006; Samuel, 2001) and to rhabdoviral 
infections (Samuel, 2001; Theofilopoulos et al., 2005).  

Transcripts encoding several forms of il17 were detected as differentially expressed only 
in one of the studies using microarrays (Encinas et al., 2010). Il17 is produced by T helper 
17 (Th17) cells (Figure 1) and acts together with il22 on epithelial cells (Trifari et al., 2009) 
and other types of skin cells to trigger il1b and tnf .  These responses induce 
neutrophil/macrophage recruitment in epithelial surfaces (Qiu et al., 2009), stimulate 
keratinocytes (Nograles et al., 2008) and increase the production of antimicrobial peptides 
such as hepcidin (hamp1) and defensin ß like-2 (defbl2). Both hamp1 and defbl2 were found  
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Gene classes Genes References 

Interleukins il17 (Encinas et al., 2010) 

& il1r (Kurobe et al., 2005) 

Receptors il8r (Nam et al., 2000) 

 il1b (Encinas et al., 2010) 

Interferon - irf1 (Kurobe et al., 2005) 

related mx (Yasuike et al., 2007) 

molecules isg15, 56 (Yasuike et al., 2007) 

 iip56 (Byon et al., 2006) 

 iip54 (Aoki et al., 1999) 

 ifn3 (Encinas et al., 2010) 

Major  
Histocompatibility 

mhc1 (Aoki et al., 1999; Byon et al., 2006; Encinas et al., 2010; 

MacKenzie et al., 2008) 

Complex mhc2 (Aoki et al., 1999; Byon et al., 2006; Kurobe et al., 2005; 

MacKenzie et al., 2008; Nam et al., 2000) 

Antimicrobial hamp1 (Aoki et al., 2011; Encinas et al., 2010) 

peptides defbl2 (Encinas et al., 2010) 

Chemokines & 
receptors 

ccr (Byon et al., 2006; Kurobe et al., 2005) 

Complement  c3 (Byon et al., 2006; Encinas et al., 2010) 

components cfb/c2b, crpp, c3b, bfb, 
cfhp, clu, c6, c8a, c8g, 
c9, c1q 

(Encinas et al., 2010) 

 c3ar (MacKenzie et al., 2008) 

High Mobility 
proteins 

hmgb (Aoki et al., 1999; Encinas et al., 2010; MacKenzie et al., 

2008; Nam et al., 2000) 

G proteins  gnb (Byon et al., 2006; Encinas et al., 2010) 

TNF-related 
molecules 

tnf (Byon et al., 2006; Encinas et al., 2010; Kurobe et al., 2005) 

 tnfr (MacKenzie et al., 2008) 

 tnfr1 (Nam et al., 2000) 

 tnfr2-traf (Kurobe et al., 2005; Nam et al., 2000) 

Toll-like  tlr2 (Kurobe et al., 2005) 

receptors tlr5 (Encinas et al., 2010) 

 tlr7 (Encinas et al., 2010) 

 tlr9 (Encinas et al., 2010) 

Immunoglobulin igh (Byon et al., 2006; Encinas et al., 2010) 

chain domains ighz (Encinas et al., 2010) 

 igl (Aoki et al., 1999; MacKenzie et al., 2008) 

 sid4 (Encinas et al., 2010) 

Table 2. Some of the fish immune-related genes differentially transcribed in microarray 
studies after rhabdoviral immunization. Independently of fish species, rhabdovirus, organ 
and time after immunization, annotated genes with a differential expression >2 fold were 
searched in the original papers and some of the most common were ordered on the basis of 
gene classes and listed in the table.  
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to be differentially expressed in some studies (Table 2) (Liang et al., 2006; Yu & Gaffen, 
2008).  

Differentially upregulated transcripts of il12 were detected in a zebrafish fin study (Encinas 

et al., 2010). In that context, il12 is crucial because it has been widely described as a vaccine 

adjuvant in mammals (Bliss et al., 1996; Chong et al., 2007; Hirao et al., 2008; Stevceva et al., 

2006), specifically increasing protective mucosal immunity (Arulanandam et al., 1999; 

Wright et al., 2008) to viral infection (Hancock et al., 2000; Jacobson et al., 2006; Skeen et al., 

1996; Zheng et al., 2005). However, ill2 has not been tested in fish. 

Co-stimulatory cell membrane cluster differentiation antigens (cd) molecules responsible for 
the antigen-presenting cell interactions with T cells were not differentially expressed, except 
those belonging to mhc1 and mhc2 molecules (Table 2). Nevertheless, the use of cds as 
vaccine adjuvants has been described for the cd154 gene in zebrafish (Gong et al., 2009); the 
reasoning being that co-expression of cds with antigen in the same cell might accelerate 
specific immune responses. Thus, specific antibody responses obtained using cd154 and the 
pMCV1.4 plasmid coding for the G gene of VHSV (Ruiz et al., 2008) were increased 3-4-fold 
with respect to the plasmid alone (Gong et al., 2009). 

Transcripts of c3 and c3a were differentially expressed in salmonid and flatfish internal 
organs after immunization-by-injection while many more complement components (cfb/c2b, 
crpp, bfb, cfhp, clu and c6 and c8a) were found in zebrafish fins after infection-by-immersion 
(Encinas et al., 2010). The use of c3 derivatives (c3a, c3d, c4a and c5a ) (Green et al., 2002; Ross 
et al., 2001; Sunyer et al., 2005; Villiers et al., 1999a; Villiers et al., 1999b) as vaccine adjuvants 
has been reported in mammals but not in fish. A possible relationship between c3 trout 
genetic polymorphism and VHSV resistance (not confirmed by genetic evidence) 
(Slierendrecht et al., 1993; Slierendrecht et al., 1995; Slierendrecht et al., 1996) may require 
further physiological studies.  

TLRs, immunoglobulin chains, TNF -related molecules, and high mobility proteins were 
also found amongst the differentially expressed genes in several studies using microarrays 
and thus might deserve some consideration as adjuvant candidates (Table 2). 

7. Future research 

Microarray and mass sequencing technologies have opened up new avenues to analyze 
gene expression profiles. The data obtained by these technologies might facilitate the 
discovery of new immune-related genes (immunogenomics), clarify the molecular 
mechanisms of immunity and identify new candidates for vaccine adjuvants. Nevertheless, 
some problems remain in the application of these technologies to the amelioration of fish 
rhabdoviral vaccines. For instance there is a need to improve comparison of the data 
obtained from different models, to complete present gene annotations, to confirm 
transcriptional data with protein data and to develop mathematical models to facilitate 
interpretation of the abundant data.  

In addition, the number of immune-related genes on zebrafish, trout, salmon, human and 
mice microarrays (Table 3), shows that more fish immune-related genes might have to be 
included in future microarray designs. The number of immune-related genes are still much 
lower in other cultured fish species (turbot, sea bream, sea bass, etc). 
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 Zebrafish Trout Salmonids Human Mouse 

Immune-related 
 

AFYz 
 

AGIz 
 

AGIt 
 

GRAs
 

TRAs 
AFYh 

U133v2.0 
AFYm 
430v2.0 

key words 14K 45K 37K 36K 36K 47K 39K 

interferon 19 53 62 92 42 103 91 

chemokine 14 36 29 56 10 104 100 

interleukin 8 57 62 49 40 187 142 

cytokine 13 43 28 49 13 87 68 

defensin 1 3 2 0 1 29 32 

antiviral 0 2 1 0 0 9 5 

LPS 0 0 0 0 2 2 7 

histocompatibili
ty 

13 18 13 59 3 76 74 

MHC 2 16 70 375 433 10 4 

viral 40 73 29 16 8 171 96 

Mx 0 1 0 0 1 0 0 

complement 28 79 168 88 53 129 102 

immunoglobuli
n 

14 53 116 54 46 294 156 

Toll 3 22 5 17 12 39 31 

TNF 15 22 7 13 3 7 38 

macrophage 5 11 22 25 25 34 36 

lymphocyte 2 15 22 14 8 49 52 

neutrophil 2 4 0 4 7 11 7 

leukocyte 6 15 12 18 4 50 21 

cytotoxic 5 5 14 3 4 30 22 

natural killer 3 0 3 2 5 19 8 

T cell 13 64 63 59 14 88 112 

B cell 20 42 29 36 11 102 97 

dendritic 0 3 15 0 3 0 0 

TOTAL 226 637 772 1029 748 1630 1301 

Table 3. Estimation of the numbers of immune-related genes in fish microarrays compared 
to human and mouse. Microarrays vary in the number of probes per gene, and gene 
nomenclatures. Many fish genes might be duplicated variants (due to pseudotetraploid 
genomes or transposon variations) and arrays may use different genes and/or cDNA or 
oligos per gene. All these facts make comparison of microarray platform gene contents 
difficult. The use of immune-related key words to preliminarily compare the relative 
abundance of the genes might serve for a first estimation. The future should bring about the 
use of a common languages such as gene abbreviations following the HUGO Gene 
Nomenclature Committee for human orthologues (http://www.genenames.org) and/or 
UniGene entries ( http://www.ncbi.nlm.nih.gov/unigene). Genes should be also grouped 
by functional categories such as by using gene ontology (GO annotation for the immune 
system http://www.geneontology.org/GO.immunology.shtml) or the clusters of 
orthologous genes (COG, http://www.ncbi.nlm.nih.gov/COG).  
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AFYz (AFFYMETRIX, zebrafish) 14K, ~ 15 oligos 25-mer/gen (Santa Clara, CA,USA).  
AGIz (AGILENT, zebrafish vs2) 45K, 1 oligo 60-mer/gen (Palo Alto,CA, USA) 
AGIt (AGILENT, trout)   37K, 1 oligo 60-mer/gen 
GRAs (GRASP, salmonids)  36K, 1 cDNA/gen 
TRAs (TRAITS-SGP, salmonids) 36K, 1 cDNA/gen 
AFYh (AFFYMETRIX, human)  47K, U133plus v2.0 ~ 11 oligos 25-mer /gen 
AFYm (AFFYMETRIX, mouse)  39K, 430 v2.0 11 oligos 25-mer/gen 

The use of microarray technology stems from the availability of genome, mRNA and EST 
(http://www.ncbi.nlm.nih.gov/dbEST) sequences to build representative annotated (gene-
identified sequences) microarrays. For most commertial fish species, there is a lack of 
information on the annotated genome or known mRNA sequences and thus most 
microarrays used for these species mostly apply EST sequences. However, correct and 
complete annotation continues to be a bottleneck.  

At present, it is quite difficult to compare data from distinct microarrays, even between 
salmonid microarrays such as GRASP, TRAITS-SGP and RTGI. We consider that reanalysis 
of the data deposited in data banks, for instance by the NCBI Gene Expression Omnibus 
(GEO) (http://www.ncbi.nlm.nih.gov/geo), to identify similar or identical genes should be 
undertaken. 

For the most studied fish species, such as zebrafish, trout and salmon, identified mRNA 
sequences present in current GenBanks can alternatively be used to design focused 
microarrays enriched in some gene classes. For instance, the zebrafish and trout microarrays 
that are currently available omit a number of immune-related genes, the number of which 
vary depending on each microarray. A possible alternative to this problem in fish species for 
which abundant annotated mRNA sequences are held in GenBanks is to search for 
keyword-selected sequences to build up the corresponding microarrays.  

One example of using some of the most obvious keywords corresponding to immune-
related genes for the trout O. mykiss and the zebrafish D. rerio is shown in Table 4. Thus, this 
table shows that the number of some immune-related genes extracted from GenBank data 
are 2-24-fold higher than their corresponding numbers in the microarrays of trout and 
zebrafish commertially available. Furthermore, trout and zebrafish 2-4K microarrays 
designed on unique sequences selected from GenBank immune-related genes (using ~50 
keywords in GenBanks) are enriched an average of 2-3-fold in immune-related sequences 
with respect to the more general 37-44K commertial alternatives (data not shown). The 
design of smaller, focused (ie: immune-related) microarrays based on existing GenBank 
sequences could contribute to making the experiments less expensive and their results easier 
to interpret.  

Although the advent of mass sequencing technologies might soon change this scenario, 
correct annotation will still require a considerable research effort for most fish species. 

Care must be taken not to over interpret differential transcript gene expression. Thus, some 
rhabdoviral-induced changes might involve protein cleavages (complement c3) and/or 
protein post-translation modifications (hmgb1) in which transcriptional control may not be 
essential. Although in most reports some of the microarray results were confirmed using 
RT-qPCR, true confirmation would require estimation of its corresponding protein levels by 
parallel proteomic studies. Thus, although the differential expression of some fin proteins  
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 Zebrafish   Trout 

Gene names 
*Available 

microarrays 
 

GenBank 
 

**Available 
microarrays 

 
GenBank 

Interleukin 88 355  47 97 

Chemokine 93 367  24 84 

Interferon 89 299  48 107 

Toll 41 107  8 37 

Immunoglobulin 96 2207  98 1234 

MHC 13 320  56 411 

Vig 0 0  6 14 

* vs 3 of 44K oligo microarray of zebrafish (Agilent's ID 26437) 
** 37K oligo microarray of trout (Agilents ID 16271) (Salem et al., 2008) 
MHC, major histocompatibility complex 
Vig, VHSV important genes 

Table 4. Comparison of some immune-related genes found in commertially available 
microarrays with those obtained from GenBank sequences. GenBank at 
http://www.ncbi.nlm.nih.goc/nuccore 

(transferrin, hemopexin, annexin, ATP binding, alpha actin, and kinesin) show a parallel 
variation with their transcript levels, in most of them, the changes in the differential 
expression of proteins do not correlate with their corresponding transcript changes (Encinas 
et al., 2010). This observation suggests that regulation of their expression is not at the 
transcriptional level, at least in that study. Although correlation of gene and protein 
expression has been found in some plants (Gallardo et al., 2007; Joosen et al., 2007), most 
studies found no correlation, including a recent report on individual E. coli cells (Taniguchi 
et al., 2010). Correlation values comparing gene/protein expression levels in several systems 
are consistently very low (Hack, 2004), suggesting that mRNA levels are poor indicators of 
the expression of their corresponding protein. Therefore, the study of mRNA levels is 
justified only when protein levels cannot be detected by the proteomic approach because of 
their low concentrations or short lives. 

Finally, mathematical modelling of microarray data may shed light on gene changes and be 
useful for testing new hypotheses. From the first symposium held on 2003 (Petrovsky et al., 
2003), some progress has been reported on the use of mathematical modelling for early 
response genes (Lawrence et al., 2007), whole immune responses (Ahmed & Hashish, 2006; 
Kalita et al., 2006), immunity to infectious diseases, including microarray data (Morel et al., 
2006) and future perspectives (Li et al., 2009; Ta'asan & Gandlin, 2009). Mathematical 
modelling is expected to develop further since there are few other alternatives available to 
interpret the massive amount of information generated by microarrays. 

8. Conclusions 

Novirhabdoviroses are among the few fish viral diseases for which efficacious DNA 
vaccines are available; however, they continue to affect aquacultured fish worldwide.  

Despite DNA vacines being commertial in Canada, the actual method of delivery by fish-to-
fish intramuscular injection and safety concerns are the major bottle necks to wide 
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acceptance of DNA vaccination. In addition, a complete understanding of the molecular 
events induced after rhabdoviral fish infection and immunization may contribute to 
improving DNA vaccines not only for rhabdoviroses but also for other fish infections for 
which there are no current remedies.  

Knowledge about infection, vaccination and adjuvant mechanisms in mammal models, 
together with high throughput genomic techniques, such as hybridization to microarrays 
(cDNA or oligo, wide or focused) and new massive sequencing technologies (largely 
unexplored in fish), offer the opportunity to gather a considerable amount of new 
transcriptional data in fish models.  

Indeed, microarrays have already been used to quantify fish gene expression as well as to 
discover new genes involved in defense in several fish rhabdovirus models, such as flatfish, 
salmonid (salmon and trout) and zebrafish.  

Genes that show increased transcription after infection (hypothetically signalling internal 
organs to react against the viral invasion) and also genes whose transcription is inhibited 
(possibly due to viral shut-off of critical host defences) might help researchers in their quest 
to identify new adjuvant candidates for fish vaccines. 
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broadest diffusion of knowledge useful for both academic and productive sector.
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