516 research outputs found

    Primary alpha-tertiary amine synthesis via alpha-C-H functionalization

    Get PDF
    A quinone-mediated general synthetic platform for the construction of primary a-tertiary amines from abundant primary a-branched amine starting materials is described. This procedure pivots on the efficient in situ generation of reactive ketimine intermediates and subsequent reaction with carboncentered nucleophiles such as organomagnesium and organolithium reagents, and TMSCN, creating quaternary centers. Furthermore, extension to reverse polarity photoredox catalysis enables reactivity with electrophiles, via a nucleophilic a-amino radical intermediate. This efficient, broadly applicable and scalable amine-to-amine synthetic platform was successfully applied to library and API synthesis and in the functionalization of drug molecules

    Recent progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics

    Full text link
    Novel therapeutic strategies are urgently needed for the treatment of serious diseases caused by viral, bacterial and parasitic infections, because currently used drugs are facing the problem of rapidly emerging resistance. There is also an urgent need for agents that act on novel pathogen-specific targets, in order to expand the repertoire of possible therapies. The high throughput screening of diverse small molecule compound libraries has provided only a limited number of new lead series, and the number of compounds acting on novel targets is even smaller. Natural product screening has traditionally been very successful in the anti-infective area. Several successful drugs on the market as well as other compounds in clinical development are derived from natural products. Amongst these, many are macrocyclic compounds in the 1-2 kDa size range. This review will describe recent advances and novel drug discovery approaches in the anti-infective area, focusing on synthetic and natural macrocyclic compounds for which in vivo proof of concept has been established. The review will also highlight the Protein Epitope Mimetics (PEM) technology as a novel tool in the drug discovery process. Here the structures of naturally occurring antimicrobial and antiviral peptides and proteins are used as starting points to generate novel macrocyclic mimetics, which can be produced and optimized efficiently by combinatorial synthetic methods. Several recent examples highlight the great potential of the PEM approach in the discovery of new anti-infective agents

    Exploring the longitudinal relationships between the use of grammar in text messaging and performance on grammatical tasks

    Get PDF
    Research has demonstrated that use of texting slang (textisms) when text messaging does not appear to impact negatively on children's literacy outcomes and may even benefit children's spelling attainment. However, less attention has been paid to the impact of text messaging on the development of children's and young people's understanding of grammar. This study therefore examined the interrelationships between children's and young adults' tendency to make grammatical violations when texting and their performance on formal assessments of spoken and written grammatical understanding, orthographic processing and spelling ability over the course of 1 year. Zero-order correlations showed patterns consistent with previous research on textism use and spelling, and there was no evidence of any negative associations between the development of the children's performance on the grammar tasks and their use of grammatical violations when texting. Adults' tendency to use ungrammatical word forms ('does you') was positively related to performance on the test of written grammar. Grammatical violations were found to be positively associated with growth in spelling for secondary school children. However, not all forms of violation were observed to be consistently used in samples of text messages taken 12 months apart or were characteristic of typical text messages. The need to differentiate between genuine errors and deliberate violation of rules is discussed, as are the educational implications of these findings

    Chemical design of non-ionic polymer brushes as biointerfaces : poly(2-oxazine)s outperform both poly(2-oxazoline)s and PEG

    Get PDF
    The era of poly(ethylene glycol) (PEG) brushes as a universal panacea for preventing non-specific protein adsorption and providing lubrication to surfaces is coming to an end. In the functionalization of medical devices and implants, in addition to preventing non-specific protein adsorption and cell adhesion, polymer-brush formulations are often required to generate highly lubricious films. Poly(2-alkyl-2-oxazoline) (PAOXA) brushes meet these requirements, and depending on their side-group composition, they can form films that match, and in some cases surpass, the bioinert and lubricious properties of PEG analogues. Poly(2-methyl-2-oxazine) (PMOZI) provides an additional enhancement of brush hydration and main-chain flexibility, leading to complete bioinertness and a further reduction in friction. These data redefine the combination of structural parameters necessary to design polymer-brush-based biointerfaces, identifying a novel, superior polymer formulation

    α/β–T Cell Receptor (TCR)+CD4−CD8− (NKT) Thymocytes Prevent Insulin-dependent Diabetes Mellitus in Nonobese Diabetic (NOD)/Lt Mice by the Influence of Interleukin (IL)-4 and/or IL-10

    Get PDF
    We have previously shown that nonobese diabetic (NOD) mice are selectively deficient in α/β-T cell receptor (TCR)+CD4−CD8− NKT cells, a defect that may contribute to their susceptibility to the spontaneous development of insulin-dependent diabetes mellitus (IDDM). The role of NKT cells in protection from IDDM in NOD mice was studied by the infusion of thymocyte subsets into young female NOD mice. A single intravenous injection of 106 CD4−/lowCD8− or CD4−CD8− thymocytes from female (BALB/c × NOD)F1 donors protected intact NOD mice from the spontaneous onset of clinical IDDM. Insulitis was still present in some recipient mice, although the cell infiltrates were principally periductal and periislet, rather than the intraislet pattern characteristic of insulitis in unmanipulated NOD mice. Protection was not associated with the induction of “allogenic tolerance” or systemic autoimmunity. Accelerated IDDM occurs after injection of splenocytes from NOD donors into irradiated adult NOD recipients. When α/β-TCR+ and α/β-TCR− subsets of CD4−CD8− thymocytes were transferred with diabetogenic splenocytes and compared for their ability to prevent the development of IDDM in irradiated adult recipients, only the α/β-TCR+ population was protective, confirming that NKT cells were responsible for this activity. The protective effect in the induced model of IDDM was neutralized by anti–IL-4 and anti–IL-10 monoclonal antibodies in vivo, indicating a role for at least one of these cytokines in NKT cell-mediated protection. These results have significant implications for the pathogenesis and potential prevention of IDDM in humans
    corecore