5,105 research outputs found
Does China Still Have A Labor Cost Advantage?
In recent years wages in China have been rising and the yuan has appreciated, potentially eroding China’s cost advantage in manufactures. This paper explores the evolution of China’s relative unit labor costs in manufacturing over 1998-2009. Between 1998 and 2003 China’s unit labor costs fell, but since 2003 they have increased both absolutely and relative to US unit labor costs. Much of the rise in China’s relative unit labor costs can be traced to a real appreciation of the yuan against the dollar. Despite the recent rise, China’s unit labor costs remain low relative to those in most other countries
Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise
As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine
Fluctuation-induced interactions between dielectrics in general geometries
We study thermal Casimir and quantum non-retarded Lifshitz interactions
between dielectrics in general geometries. We map the calculation of the
classical partition function onto a determinant which we discretize and
evaluate with the help of Cholesky factorization. The quantum partition
function is treated by path integral quantization of a set of interacting
dipoles and reduces to a product of determinants. We compare the approximations
of pairwise additivity and proximity force with our numerical methods. We
propose a ``factorization approximation'' which gives rather good numerical
results in the geometries that we study
Developments in new aircraft tire tread materials
Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock
Separable states can be used to distribute entanglement
We show that no entanglement is necessary to distribute entanglement; that
is, two distant particles can be entangled by sending a third particle that is
never entangled with the other two. Similarly, two particles can become
entangled by continuous interaction with a highly mixed mediating particle that
never itself becomes entangled. We also consider analogous properties of
completely positive maps, in which the composition of two separable maps can
create entanglement.Comment: 4 pages, 2 figures. Slight modification
Interaction-assisted propagation of Coulomb-correlated electron-hole pairs in disordered semiconductors
A two-band model of a disordered semiconductor is used to analyze dynamical
interaction induced weakening of localization in a system that is accessible to
experimental verification. The results show a dependence on the sign of the
two-particle interaction and on the optical excitation energy of the
Coulomb-correlated electron-hole pair.Comment: 4 pages and 3 ps figure
Asymptotically Optimal Quantum Circuits for d-level Systems
As a qubit is a two-level quantum system whose state space is spanned by |0>,
|1>, so a qudit is a d-level quantum system whose state space is spanned by
|0>,...,|d-1>. Quantum computation has stimulated much recent interest in
algorithms factoring unitary evolutions of an n-qubit state space into
component two-particle unitary evolutions. In the absence of symmetry, Shende,
Markov and Bullock use Sard's theorem to prove that at least C 4^n two-qubit
unitary evolutions are required, while Vartiainen, Moettoenen, and Salomaa
(VMS) use the QR matrix factorization and Gray codes in an optimal order
construction involving two-particle evolutions. In this work, we note that
Sard's theorem demands C d^{2n} two-qudit unitary evolutions to construct a
generic (symmetry-less) n-qudit evolution. However, the VMS result applied to
virtual-qubits only recovers optimal order in the case that d is a power of
two. We further construct a QR decomposition for d-multi-level quantum logics,
proving a sharp asymptotic of Theta(d^{2n}) two-qudit gates and thus closing
the complexity question for all d-level systems (d finite.) Gray codes are not
required, and the optimal Theta(d^{2n}) asymptotic also applies to gate
libraries where two-qudit interactions are restricted by a choice of certain
architectures.Comment: 18 pages, 5 figures (very detailed.) MatLab files for factoring qudit
unitary into gates in MATLAB directory of source arxiv format. v2: minor
change
Magnetic trapping of ultracold neutrons
Three-dimensional magnetic confinement of neutrons is reported. Neutrons are
loaded into an Ioffe-type superconducting magnetic trap through inelastic
scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low
energy and in the appropriate spin state are confined by the magnetic field
until they decay. The electron resulting from neutron decay produces
scintillations in the liquid helium bath that results in a pulse of extreme
ultraviolet light. This light is frequency downconverted to the visible and
detected. Results are presented in which 500 +/- 155 neutrons are magnetically
trapped in each loading cycle, consistent with theoretical predictions. The
lifetime of the observed signal, 660 s +290/-170 s, is consistent with the
neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review
UCN Upscattering rates in a molecular deuterium crystal
A calculation of ultra-cold neutron (UCN) upscattering rates in molecular
deuterium solids has been carried out, taking into account intra-molecular
exictations and phonons. The different moelcular species ortho-D2 (with even
rotational quantum number J) and para-D2 (with odd J) exhibit significantly
different UCN-phonon annihilation cross-sections. Para- to ortho-D2 conversion,
furthermore, couples UCN to an energy bath of excited rotational states without
mediating phonons. This anomalous upscattering mechanism restricts the UCN
lifetime to 4.6 msec in a normal-D2 solid with 33% para content.Comment: 3 pages, one figur
- …