210 research outputs found
A New Method for Non-Invasive Estimation of Human Muscle Fiber Type Composition
Background: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT) or type-II fibers and slow-twitch (ST) or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative.status: publishe
Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use
Using contemporary stable-isotope methodology and fluorescence microscopy, we assessed the impact of carbohydrate supplementation on whole-body and fiber-type-specific intramyocellular triacylglycerol (IMTG) and glycogen use during prolonged endurance exercise. Ten endurance-trained male subjects were studied twice during 3Β h of cycling at 63βΒ±β4% of maximal O2 uptake with either glucose ingestion (CHO trial; 0.7Β g CHO kgβ1 hβ1) or without (CON placebo trial; water only). Continuous infusions with [U-13C] palmitate and [6,6-2H2] glucose were applied to quantify plasma free fatty acids (FFA) and glucose oxidation rates and to estimate intramyocellular lipid and glycogen use. Before and after exercise, muscle biopsy samples were taken to quantify fiber-type-specific IMTG and glycogen content. Plasma glucose rate of appearance (Ra) and carbohydrate oxidation rates were substantially greater in the CHO vs CON trial. Carbohydrate supplementation resulted in a lower muscle glycogen use during the first hour of exercise in the CHO vs CON trial, resulting in a 38βΒ±β19 and 57βΒ±β22% decreased utilization in type I and II muscle-fiber glycogen content, respectively. In the CHO trial, both plasma FFA Ra and subsequent plasma FFA concentrations were lower, resulting in a 34βΒ±β12% reduction in plasma FFA oxidation rates during exercise (Pβ<β0.05). Carbohydrate intake did not augment IMTG utilization, as fluorescence microscopy revealed a 76βΒ±β21 and 78βΒ±β22% reduction in type I muscle-fiber lipid content in the CHO and CON trial, respectively. We conclude that carbohydrate supplementation during prolonged cycling exercise does not modulate IMTG use but spares muscle glycogen use during the initial stages of exercise in endurance-trained men
The kinetics of lactate production and removal during whole-body exercise
<p>Abstract</p> <p>Background</p> <p>Based on a literature review, the current study aimed to construct mathematical models of lactate production and removal in both muscles and blood during steady state and at varying intensities during whole-body exercise. In order to experimentally test the models in dynamic situations, a cross-country skier performed laboratory tests while treadmill roller skiing, from where work rate, aerobic power and blood lactate concentration were measured. A two-compartment simulation model for blood lactate production and removal was constructed.</p> <p>Results</p> <p>The simulated and experimental data differed less than 0.5 mmol/L both during steady state and varying sub-maximal intensities. However, the simulation model for lactate removal after high exercise intensities seems to require further examination.</p> <p>Conclusions</p> <p>Overall, the simulation models of lactate production and removal provide useful insight into the parameters that affect blood lactate response, and specifically how blood lactate concentration during practical training and testing in dynamical situations should be interpreted.</p
Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction
Purpose. Neuromuscular electrical stimulation (NMES) superimposed on voluntary muscle contraction has been recently
shown as an innovative training modality within sport and rehabilitation, but its effects on the neuromuscular system are
still unclear. The aim of this study was to investigate acute responses in spinal excitability, as measured by the Hoffmann
(H) reflex, and in maximal voluntary contraction (MVIC) following NMES superimposed to voluntary isometric
contractions (NMES+ISO) compared to passive NMES only and to voluntary isometric contractions only (ISO). Method.
Fifteen young adults were required to maintain an ankle plantar-flexor torque of 20% MVC for 20 repetitions during each
experimental condition (NMES+ISO, NMES and ISO). Surface electromyography was used to record peak-to-peak Hreflex and motor waves following percutaneous stimulation of the posterior tibial nerve in the dominant limb. An
isokinetic dynamometer was used to assess maximal voluntary contraction output of the ankle plantar flexor muscles.
Results. H-reflex amplitude was increased by 4.5% after the NMES+ISO condition (p < 0.05), while passive NMES and
ISO conditions showed a decrease by 7.8% (p < 0.05) and no change in reflex responses, respectively. There was no
change in amplitude of maximal motor wave and in MVIC torque during each experimental condition. Conclusion. The
reported facilitation of spinal excitability following NMES+ISO could be due to a combination of greater motor neuronal
and corticospinal excitability, thus suggesting that NMES superimposed onto isometric voluntary contractions may
provide a more effective neuromuscular stimulus and, hence, training modality compared to NMES alone
Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis
Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and Ξ±-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles
Nutritional strategies of high level natural bodybuilders during competition preparation
Background
Competitive bodybuilders employ a combination of resistance training, cardiovascular exercise, calorie reduction, supplementation regimes and peaking strategies in order to lose fat mass and maintain fat free mass. Although recommendations exist for contest preparation, applied research is limited and data on the contest preparation regimes of bodybuilders are restricted to case studies or small cohorts. Moreover, the influence of different nutritional strategies on competitive outcome is unknown.
Methods
Fifty-one competitors (35 male and 16 female) volunteered to take part in this project. The British Natural Bodybuilding Federation (BNBF) runs an annual national competition for high level bodybuilders; competitors must qualify by winning at a qualifying events or may be invited at the judgeβs discretion. Competitors are subject to stringent drug testing and have to undergo a polygraph test. Study of this cohort provides an opportunity to examine the dietary practices of high level natural bodybuilders. We report the results of a cross-sectional study of bodybuilders competing at the BNBF finals. Volunteers completed a 34-item questionnaire assessing diet at three time points. At each time point participants recorded food intake over a 24-h period in grams and/or portions. Competitors were categorised according to contest placing. A βplacedβ competitor finished in the top 5, and a βNon-placedβ (DNP) competitor finished outside the top 5. Nutrient analysis was performed using Nutritics software. Repeated measures ANOVA and effect sizes (Cohenβs d) were used to test if nutrient intake changed over time and if placing was associated with intake.
Results
Mean preparation time for a competitor was 22βΒ±β9 weeks. Nutrient intake of bodybuilders reflected a high-protein, high-carbohydrate, low-fat diet. Total carbohydrate, protein and fat intakes decreased over time in both male and female cohorts (P <β0.05). Placed male competitors had a greater carbohydrate intake at the start of contest preparation (5.1 vs 3.7 g/kg BW) than DNP competitors (d =β1.02, 95% CI [0.22, 1.80]).
Conclusions
Greater carbohydrate intake in the placed competitors could theoretically have contributed towards greater maintenance of muscle mass during competition preparation compared to DNP competitors. These findings require corroboration, but will likely be of interest to bodybuilders and coaches.
Keywords
BodybuildersCaloriesCompetitionContest preparationDietingEnergy restrictionNaturalNutritionSupplementationPhysiqu
The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes
Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease
Mitochondrial function as a determinant of life span
Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion
Carbohydrate Dependence During Prolonged, Intense Endurance Exercise
A major goal of training to improve the performance of prolonged, continuous, endurance events lasting up to 3Β h is to promote a range of physiological and metabolic adaptations that permit an athlete to work at both higher absolute and relative power outputs/speeds and delay the onset of fatigue (i.e., a decline in exercise intensity). To meet these goals, competitive endurance athletes undertake a prodigious volume of training, with a large proportion performed at intensities that are close to or faster than race pace and highly dependent on carbohydrate (CHO)-based fuels to sustain rates of muscle energy production [i.e., match rates of adenosine triphosphate (ATP) hydrolysis with rates of resynthesis]. Consequently, to sustain muscle energy reserves and meet the daily demands of training sessions, competitive athletes freely select CHO-rich diets. Despite renewed interest in high-fat, low-CHO diets for endurance sport, fat-rich diets do not improve training capacity or performance, but directly impair rates of muscle glycogenolysis and energy flux, limiting high-intensity ATP production. When highly trained athletes compete in endurance events lasting up to 3Β h, CHO-, not fat-based fuels are the predominant fuel for the working muscles and CHO, not fat, availability becomes rate limiting for performance
- β¦