532 research outputs found

    Developments and challenges in dermatology: an update from the Interactive Derma Academy (IDeA) 2019

    Get PDF
    The 2019 Interactive Derma Academy (IDeA) meeting was held in Lisbon, Portugal, 10–12 May, bringing together leading dermatology experts from across Europe, the Middle East and Asia. Over three days, the latest developments and challenges in relation to the pathophysiology, diagnosis, evaluation and management of dermatological conditions were presented, with a particular focus on acne, atopic dermatitis (AD) and actinic keratosis (AK). Interesting clinical case studies relating to these key topics were discussed with attendees to establish current evidence-based best practices. Presentations reviewed current treatments, potential therapeutic approaches and key considerations in the management of acne, AK and AD, and discussed the importance of the microbiome in these conditions, as well as the provision of patient education/support. It was highlighted that active treatment is not always required for AK, depending on patient preferences and clinical circumstances. In addition to presentations, two interactive workshops on the diagnosis and treatment of sexually transmitted infections/diseases (STIs/STDs) presenting to the dermatology clinic, and current and future dermocosmetics were conducted. The potential for misdiagnosis of STIs/STDs was discussed, with dermoscopy and/or reflectance confocal microscopy suggested as useful diagnostic techniques. In addition, botulinum toxin was introduced as a potential dermocosmetic, and the possibility of microbiome alteration in the treatment of dermatological conditions emphasized. Furthermore, several challenges in dermatology, including the use of lasers, the complexity of atopic dermatitis, wound care, use of biosimilars and application of non-invasive techniques in skin cancer diagnosis were reviewed. In this supplement, we provide an overview of the presentations and discussions from the fourth successful IDeA meeting, summarizing the key insights shared by dermatologists from across the globe

    First in vitro isolation of Besnoitia besnoiti from chronically infected cattle in Germany

    Get PDF
    Besnoitia besnoiti was in vitro isolated during the first recorded outbreak of bovine besnoitiosis in Germany. Molecular characterization of the new isolate, named Bb-GER1, revealed almost 100% identity with other B. besnoiti isolates obtained in Portugal, Spain, Israel or South Africa, when partial sequences of the 18S ribosomal RNA gene, of the internal transcribed spacer 1 and of the 5.8S RNA gene were compared. Cystozoites obtained from skin tissue of one bull were infectious for gamma-interferon knockout (GKO) mice by intraperitoneal (ip) inoculation. Tachyzoites were detected in the peritoneal cavity, spleen, liver and lung of the mice 5 days post-infection. The parasite could be maintained in GKO mice by ip inoculation for at least 5 passages. Peritoneal washings containing tachyzoites were obtained from infected mice and used to infect five cell lines (Vero, MARC-145, NA42/13, BHK21, KH-R). The best growth of tachyzoites was observed in BHK21 cells, but replication occurred to a smaller extent also in MARC-145, NA42/13 and KH-R cells. Subsequent comparative analyses revealed that after direct infection of these cell lines with cystozoites derived from bovine skin, the growth was best in NA42/13 cells. Considerable replication was also observed in the BHK21 and KH-R cell lines. Our observations on the growth characteristics of Bb-GER1 partially contrast those for other isolates. The preferential growth in particular cell lines may be characteristic for particular B. besnoiti isolates. A potential association between growth proper-ties and differences in virulence remains to be established. This is the first in vitro isolation of B. besnoiti from cattle in Germany.Laboratorio de Inmunoparasitologí

    Subjects With Early-Onset Type 2 Diabetes Show Defective Activation of the Skeletal Muscle PGC-1α/Mitofusin-2 Regulatory Pathway in Response to Physical Activity

    Get PDF
    Objective: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase Vo2max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. Research design and methods: Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha/mitofusin-2 (Mfn2) was analyzed. Results: At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the alpha-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the alpha-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and alpha-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1alpha expression in muscle from control subjects but not in subjects with diabetes. Conclusions: Our results demonstrate alterations in the regulatory pathway that controls PGC-1alpha expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1alpha and Mfn2.</p

    CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells

    Get PDF
    Cancer survival rates decrease in the presence of disseminated disease. However, there are few therapies that are effective at eliminating the primary tumour while providing control of distant stage disease. Photodynamic therapy (PDT) is an FDA-approved modality that rapidly eliminates local tumours, resulting in cure of early disease and palliation of advanced disease. Numerous pre-clinical studies have shown that local PDT treatment of tumours enhances anti-tumour immunity. We hypothesised that enhancement of a systemic anti-tumour immune response might control the growth of tumours present outside the treatment field. To test this hypothesis we delivered PDT to subcutaneous (s.c.) tumours of mice bearing both s.c. and lung tumours and monitored the growth of the untreated lung tumours. Our results demonstrate that PDT of murine tumours provided durable inhibition of the growth of untreated lung tumours. The inhibition of the growth of tumours outside the treatment field was tumour-specific and dependent on the presence of CD8+ T cells. This inhibition was accompanied by an increase in splenic anti-tumour cytolytic activity and by an increase in CD8+ T cell infiltration into untreated tumours. Local PDT treatment led to enhanced anti-tumour immune memory that was evident 40 days after tumour treatment and was independent of CD4+ T cells. CD8+ T cell control of the growth of lung tumours present outside the treatment field following PDT was dependent upon the presence of natural killer (NK) cells. These results suggest that local PDT treatment of tumours lead to induction of an anti-tumour immune response capable of controlling the growth of tumours outside the treatment field and indicate that this modality has potential in the treatment of distant stage disease

    European dermatology forum - updated guidelines on the use of extracorporeal photopheresis 2020 - part 1.

    Get PDF
    Following the first investigational study on the use of extracorporeal photopheresis for the treatment of cutaneous T-cell lymphoma published in 1983, this technology has received continued use and further recognition for additional earlier as well as refractory forms. After the publication of the first guidelines for this technology in the JEADV in 2014, this technology has maintained additional promise in the treatment of other severe and refractory conditions in a multi-disciplinary setting. It has confirmed recognition in well-known documented conditions such as graft-versus-host disease after allogeneic bone marrow transplantation, systemic sclerosis, solid organ transplant rejection including lung, heart and liver and to a lesser extent inflammatory bowel disease. In order to further provide recognized expert practical guidelines for the use of this technology for all indications, the European Dermatology Forum (EDF) again proceeded to address these questions in the hands of the recognized experts within and outside the field of dermatology. This was done using the recognized and approved guidelines of EDF for this task. All authors had the opportunity to review each contribution as it was added. These updated 2020 guidelines provide at present the most comprehensive available expert recommendations for the use of extracorporeal photopheresis based on the available published literature and expert consensus opinion. The guidelines are divided in two parts: PART I covers cutaneous T-cell lymphoma, chronic graft-versus-host disease and acute graft-versus-host disease while PART II will cover scleroderma, solid organ transplantation, Crohn's disease, use of ECP in paediatrics practice, atopic dermatitis, type 1 diabetes, pemphigus, epidermolysis bullosa acquisita and erosive oral lichen planus

    Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use

    Get PDF
    Using contemporary stable-isotope methodology and fluorescence microscopy, we assessed the impact of carbohydrate supplementation on whole-body and fiber-type-specific intramyocellular triacylglycerol (IMTG) and glycogen use during prolonged endurance exercise. Ten endurance-trained male subjects were studied twice during 3 h of cycling at 63 ± 4% of maximal O2 uptake with either glucose ingestion (CHO trial; 0.7 g CHO kg−1 h−1) or without (CON placebo trial; water only). Continuous infusions with [U-13C] palmitate and [6,6-2H2] glucose were applied to quantify plasma free fatty acids (FFA) and glucose oxidation rates and to estimate intramyocellular lipid and glycogen use. Before and after exercise, muscle biopsy samples were taken to quantify fiber-type-specific IMTG and glycogen content. Plasma glucose rate of appearance (Ra) and carbohydrate oxidation rates were substantially greater in the CHO vs CON trial. Carbohydrate supplementation resulted in a lower muscle glycogen use during the first hour of exercise in the CHO vs CON trial, resulting in a 38 ± 19 and 57 ± 22% decreased utilization in type I and II muscle-fiber glycogen content, respectively. In the CHO trial, both plasma FFA Ra and subsequent plasma FFA concentrations were lower, resulting in a 34 ± 12% reduction in plasma FFA oxidation rates during exercise (P < 0.05). Carbohydrate intake did not augment IMTG utilization, as fluorescence microscopy revealed a 76 ± 21 and 78 ± 22% reduction in type I muscle-fiber lipid content in the CHO and CON trial, respectively. We conclude that carbohydrate supplementation during prolonged cycling exercise does not modulate IMTG use but spares muscle glycogen use during the initial stages of exercise in endurance-trained men

    Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments

    Get PDF
    Several immune-related markers have been implicated in basal cell carcinoma (BCC) pathogenesis. The BCC inflammatory infiltrate is dominated by Th2 cytokines, suggesting a specific state of immunosuppression. In contrast, regressing BCC are characterized by a Th1 immune response with IFN-γ promoting a tumor suppressive activity. IL-23/Th17-related cytokines, as interleukin (IL)-17, IL-23 and IL-22, play a significant role in cutaneous inflammatory diseases, but their involvement in skin carcinogenesis is controversial and is poorly investigated in BCC. In this study we investigated the expression of IFN-γ, IL-17, IL-23 and IL-22 cytokines in BCC at the protein and mRNA level and their modulation during imiquimod (IMQ) treatment or photodynamic therapy (PDT). IFN-γ, IL-17, IL-23 and IL-22 levels were evaluated by immunohistochemistry and quantitative Real Time PCR in 41 histopatho-logically-proven BCCs (28 superficial and 13 nodular) from 39 patients. All BCC samples were analyzed at baseline and 19 of 41 also during medical treatment (9 with IMQ 5% cream and 10 with MAL-PDT). Association between cytokines expression and clinico-pathological variables was evaluated. Higher levels of IFN-γ, IL-17, IL-23 and IL-22 were found in BCCs, mainly in the peritumoral infiltrate, compared to normal skin, with the expression being correlated to the severity of the inflammatory infiltrate. IFN-γ production was higher in superficial BCCs compared to nodular BCCs, while IL-17 was increased in nodular BCCs. A significant correlation was found between IFN-γ and IL-17 expression with both cytokines expressed by CD4+ and CD8+ T-cells. An increase of all cytokines occurred during the inflammatory phase induced by IMQ and at the early time point of PDT treatment, with significant evidence for IFN-γ, IL-23, and IL-22. Our results confirm the role of IFN-γ and support the involvement of IL-23/Th17-related cytokines in BCC pathogenesis and in the inflammatory response during IMQ and MAL-PDT treatments

    Photodynamic Therapy of Tumors Can Lead to Development of Systemic Antigen-Specific Immune Response

    Get PDF
    Background: The mechanism by which the immune system can effectively recognize and destroy tumors is dependent on recognition of tumor antigens. The molecular identity of a number of these antigens has recently been identified and several immunotherapies have explored them as targets. Photodynamic therapy (PDT) is an anti-cancer modality that uses a non-toxic photosensitizer and visible light to produce cytotoxic reactive oxygen species that destroy tumors. PDT has been shown to lead to local destruction of tumors as well as to induction of anti-tumor immune response. Methodology/Principal Findings: We used a pair of equally lethal BALB/c colon adenocarcinomas, CT26 wild-type (CT26WT) and CT26.CL25 that expressed a tumor antigen, β-galactosidase (β-gal), and we treated them with vascular PDT. All mice bearing antigen-positive, but not antigen-negative tumors were cured and resistant to rechallenge. T lymphocytes isolated from cured mice were able to specifically lyse antigen positive cells and recognize the epitope derived from beta-galactosidase antigen. PDT was capable of destroying distant, untreated, established, antigen-expressing tumors in 70% of the mice. The remaining 30% escaped destruction due to loss of expression of tumor antigen. The PDT anti-tumor effects were completely abrogated in the absence of the adaptive immune response. Conclusion: Understanding the role of antigen-expression in PDT immune response may allow application of PDT in metastatic as well as localized disease. To the best of our knowledge, this is the first time that PDT has been shown to lead to systemic, antigen- specific anti-tumor immunity.United States. National Cancer Institute (grant RO1CA/AI838801)United States. National Cancer Institute (grant R01AI050875
    corecore