21 research outputs found

    Characterization of the eddy dissipation model for the analysis of hydrogen-fueled scramjets

    Get PDF
    The eddy dissipation model (EDM) is analysed with respect to the ability to address the turbulence–combustion interaction process inside hydrogen-fuelled scramjet engines designed to operate at high Mach numbers (≈7–12). The aim is to identify the most appropriate strategy for the use of the model and the calibration of the modelling constants for future design purposes. To this end, three hydrogen-fuelled experimental scramjet configurations with different fuel injection approaches are studied numerically. The first case consists of parallel fuel injection and it is shown that relying on estimates of ignition delay from a 1D kinetics program can greatly improve the effectiveness of the EDM. This was achieved through a proposed zonal approach. The second case considers fuel injection behind a strut. Here the EDM predicts two reacting layers along the domain which is in agreement with experimental temperature profiles close to the point of injection but not the case any more at the downstream end of the test section. The first two scramjet test cases demonstrated that the kinetic limit, which can be applied to the EDM, does not improve the predictions in comparison to experimental data. The last case considered a transverse injection of hydrogen and the EDM approach provided overall good agreement with experimental pressure traces except in the vicinity of the injection location. The EDM appears to be a suitable tool for scramjet combustor analysis incorporating different fuel injection mechanisms with hydrogen. More specifically, the considered test cases demonstrate that the model provides reasonable predictions of pressure, velocity, temperature and composition

    Superorbital expansion tube operation: estimates of flow conditions via numerical simulation

    Get PDF
    Two new operating conditions of the X3 superorbital expansion tube are studied experimentally and numerically. A two-stage numerical simulation is used to model the flow processes within the whole facility, from the compressed driver gas, through the initial shock-processing of the test gas and then through the unsteady expansion process to the final test flow state. Experimental measurements provide static pressure histories at particular points along the shock and acceleration tubes while the numerical simulations provide complementary information on gas density, temperature and composition. Operating condition properties such as shock speed are both observed in the experiment and produced as a result of the simulation are used to check the reliability of the numerical simulations

    Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress

    Get PDF
    Five species of Eucalyptus (E. grandis, E. urophylla, E. camaldulensis, E. torelliana, and E. phaeotrica), among the ten species most commonly used in large scale plantations, were selected for studies on the effects of elevated CO2 concentration [CO2] and drought stress on stomatal responses of 2.5-month old seedlings. The first three species belong to the subgenus Smphyomyrtus, whereas the fourth species belongs to the subgenus Corymbia and E. phaeotrica is from the subgenus Monocalyptus. Seedlings were grown in four pairs of open-top chambers, arranged to have 2 plants of each species in each chamber, with four replications in each of two CO2 concentrations: 350 ± 30 mumol mol-1 and 700 ± 30 mumol mol-1. After 100 days in the chambers, a series of gas exchange measurements were made. Half the plants in each chamber, one plant per species per chamber, were drought-stressed by withholding irrigation, while the remaining plants continued to be watered daily. Drought stress decreased stomatal conductance, photosynthesis and transpiration rates in all the species. The effect of drought stress on stomatal closure was similar in both [CO2]. The positive effects of elevated [CO2] on photosynthesis and water use efficiency were maintained longer during the stress period than under well-watered conditions. The photosynthetic rate of E. phaeotrica was higher even in the fourth day of the drought stress. Drought stress increased photoinhibition of photosynthesis, as measured by chlorophyll fluorescence, which varied among the species, as well as in relation to [CO2]. The results are in agreement with observed differences in stomatal responses between some eucalyptus species of the subgenera Symphyomyrtus and Monocalyptus

    The energy spectrum of cosmic rays beyond the turn-down around 10^17 eV as measured with the surface detector of the Pierre Auger Observatory

    Get PDF
    We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays

    Design and implementation of the AMIGA embedded system for data acquisition

    Get PDF

    Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

    Get PDF
    Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60o using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers

    Experimental and numerical heat transfer from vortex-injection interaction in scramjet flowfields

    No full text
    Air-breathing propulsion has the potential to decrease the cost per kilogram for access-to-space, while increasing the flexibility of available low earth orbits. However, to meet the performance requirements, fuel-air mixing inside of scramjet engines and thermal management still need to be improved. An option to address these issues is to use intrinsically generated vortices from scramjet inlets to enhance fuel-air mixing further downstream, leading to shorter, less internal drag generating, and thus more efficient engines. Previous works have studied this vortex-injection interaction numerically, but validation was impractical due to lack of published experimental data. This paper extends upon these previous works by providing experimental data for a canonical geometry, obtained in the T4 Stalker Tube at Mach 8 flight conditions, and assesses the accuracy of numerical methodologies such as RANS CFD to predict the vortex-injection interaction. Focus is placed on understanding the ability of the numerical methodology to replicate the most important aspects of the vortex-injection interaction. Results show overall good agreement between the numerical and experimental results, as all major features are captured. However, limitations are encountered, especially due to a localised region of over predicted heat flux
    corecore