87 research outputs found

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table

    Ground and In-Flight Calibration of the OSIRIS-REx Camera Suite

    Get PDF
    The OSIRIS-REx Camera Suite (OCAMS) onboard the OSIRIS-REx spacecraft is used to study the shape and surface of the mission’s target, asteroid (101955) Bennu, in support of the selection of a sampling site. We present calibration methods and results for the three OCAMS cameras—MapCam, PolyCam, and SamCam—using data from pre-flight and in-flight calibration campaigns. Pre-flight calibrations established a baseline for a variety of camera properties, including bias and dark behavior, flat fields, stray light, and radiometric calibration. In-flight activities updated these calibrations where possible, allowing us to confidently measure Bennu’s surface. Accurate calibration is critical not only for establishing a global understanding of Bennu, but also for enabling analyses of potential sampling locations and for providing scientific context for the returned sample

    Cross calibration between Hayabusa2/ONC-T and OSIRIS-REx/MapCam for comparative analyses between asteroids Ryugu and Bennu

    Full text link
    Proximity observations of (162173) Ryugu by the telescopic Optical Navigation Camera onboard Hayabusa2 and (101955) Bennu by MapCam onboard Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer found opposite spectral trends of space weathering on these carbonaceous asteroids. Whether the space weathering trends on these asteroids evolved from the same starting spectra would place an important constraint for understanding their relation. However, systematic error between data obtained by the two imagers needed to be reduced for accurate comparison. To resolve this problem, we cross calibrated albedo and color data using the Moon as the common standard. We show that the cross-calibrated reflectance can be obtained by upscaling the pre-cross-calibrated reflectance of Bennu by 12 +/- 2% at v-band, reducing the systematic errors down to 2%. The cross-calibrated data show that Bennu is brighter by 16 +/- 2% at v-band and bluer in spectral slope by 0.19 +/- 0.05 (/um) than Ryugu. The spectra of fresh craters on Ryugu and Bennu before cross calibration appeared to follow two parallel trend lines with offset, but they converged to a single trend after cross calibration. Such a post-cross-calibration perspective raise the possibility that Ryugu and Bennu evolved from materials with similar visible spectra but evolved in diverging directions by space weathering. The divergent evolution can be caused by the difference in space weathering dose/process and/or composition of the starting material. Thus, comparing the composition of samples returned from Ryugu and Bennu may change the way we interpret the spectral variation of C-complex asteroids

    Craters, Boulders and Regolith of (101955) Bennu Indicative of an Old and Dynamic Surface

    Get PDF
    Small, kilometre-sized near-Earth asteroids are expected to have young and frequently refreshed surfaces for two reasons: collisional disruptions are frequent in the main asteroid belt where they originate, and thermal or tidal processes act on them once they become near-Earth asteroids. Here we present early measurements of numerous large candidate impact craters on near-Earth asteroid (101955) Bennu by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer) mission, which indicate a surface that is between 100 million and 1 billion years old, predating Bennu's expected duration as a near-Earth asteroid. We also observe many fractured boulders, the morphology of which suggests an influence of impact or thermal processes over a considerable amount of time since the boulders were exposed at the surface. However, the surface also shows signs of more recent mass movement: clusters of boulders at topographic lows, a deficiency of small craters and infill of large craters. The oldest features likely record events from Bennu's time in the main asteroid belt

    Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface

    Get PDF
    International audienceSmall, kilometre-sized near-Earth asteroids are expected to have young and frequently refreshed surfaces for two reasons: collisional disruptions are frequent in the main asteroid belt where they originate, and thermal or tidal processes act on them once they become near-Earth asteroids. Here we present early measurements of numerous large candidate impact craters on near-Earth asteroid (101955) Bennu by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission, which indicate a surface that is between 100 million and 1 billion years old, predating Bennu’s expected duration as a near-Earth asteroid. We also observe many fractured boulders, the morphology of which suggests an influence of impact or thermal processes over a considerable amount of time since the boulders were exposed at the surface. However, the surface also shows signs of more recent mass movement: clusters of boulders at topographic lows, a deficiency of small craters and infill of large craters. The oldest features likely record events from Bennu’s time in the main asteroid belt

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth
    corecore