165 research outputs found

    The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives

    Get PDF
    An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400-2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486-2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local "searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processin

    The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives.

    Get PDF
    An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400-2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486-2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local "searchlights" and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing

    Folate receptor-β imaging using 99mTc-folate to explore distribution of polarized macrophage populations in human atherosclerotic plaque

    Get PDF
    UNLABELLED: In atherosclerotic plaques, the risk of rupture is increased at sites of macrophage accumulation. Activated macrophages express folate receptor-β (FR-β), which can be targeted by folate coupled to radioactive ligands to visualize vulnerability. The aim of this study was to explore the presence of activated macrophages in human atherosclerotic plaques by (99m)Tc-folate imaging and to evaluate whether this technique can discriminate between an M1-like and M2-like macrophage phenotype. METHODS: Carotid endarterectomy specimens of 20 patients were incubated with (99m)Tc-folate, imaged using micro-SPECT, and divided into 3-mm slices. The mean accumulation was calculated per slice, and the distribution of M1-like and M2-like macrophages per slice was quantified by immunohistochemical staining for CD86 as well as inducible nitric oxide synthase (iNOS) for M1 and CD163 and FR-β for M2 macrophages. Monocytes from healthy donors were differentiated toward M1-like or M2-like phenotype by in vitro culturing. Messenger RNA levels of specific M1 and M2 markers were measured by reverse-transcription polymerase chain reaction and expression of FR-β, CD86, and CD163 by flow cytometry. RESULTS: There was a heterogeneous accumulation of (99m)Tc-folate in plaques (median, 2.45 [0.77-6.40] MBq/g). Slices with the highest (99m)Tc-folate accumulation of each plaque showed significantly more expression of FR-β and CD163, compared with slices with the lowest (99m)Tc-folate accumulation, which showed significantly more expression of iNOS. In in vitro polarized macrophages, messenger RNA expression of FR-β, mannose receptor, IL-10, and matrix metalloproteinase-9 was significantly increased in M2-like macrophages, compared with M1-like macrophages. On a receptor level, CD86 was shown to be overexpressed on M1-like macrophages whereas FR-β and CD163 were overexpressed on M2-like macrophages measured by flow cytometry. CONCLUSION: Higher numbers of M2-like macrophages were present in areas of high (99m)Tc-folate accumulation than areas with low accumulation. It is anticipated that (99m)Tc-folate imaging using SPECT as a marker for M2-like macrophages in atherosclerosis might be a good indicator for plaque vulnerability

    The Influence of Spatial Registration on Detection of Cerebral Asymmetries Using Voxel-Based Statistics of Fractional Anisotropy Images and TBSS

    Get PDF
    The sensitivity of diffusion tensor imaging (DTI) for detecting microstructural white matter alterations has motivated the application of voxel-based statistics (VBS) to fractional anisotropy (FA) images (FA-VBS). However, detected group differences may depend on the spatial registration method used. The objective of this study was to investigate the influence of spatial registration on detecting cerebral asymmetries in FA-VBS analyses with reference to data obtained using Tract-Based Spatial Statistics (TBSS). In the first part of this study we performed FA-VBS analyses using three single-contrast and one multi-contrast registration: (i) whole-brain registration based on T2 contrast, (ii) whole-brain registration based on FA contrast, (iii) individual-hemisphere registration based on FA contrast, and (iv) a combination of (i) and (iii). We then compared the FA-VBS results with those obtained from TBSS. We found that the FA-VBS results depended strongly on the employed registration approach, with the best correspondence between FA-VBS and TBSS results when approach (iv), the “multi-contrast individual-hemisphere” method was employed. In the second part of the study, we investigated the spatial distribution of residual misregistration for each registration approach and the effect on FA-VBS results. For the FA-VBS analyses using the three single-contrast registration methods, we identified FA asymmetries that were (a) located in regions prone to misregistrations, (b) not detected by TBSS, and (c) specific to the applied registration approach. These asymmetries were considered candidates for apparent FA asymmetries due to systematic misregistrations associated with the FA-VBS approach. Finally, we demonstrated that the “multi-contrast individual-hemisphere” approach showed the least residual spatial misregistrations and thus might be most appropriate for cerebral FA-VBS analyses

    Comparisons between Tethyan Anorthosite-bearing Ophiolites and Archean Anorthosite-bearing Layered Intrusions: Implications for Archean Geodynamic Processes

    Get PDF
    Elucidating the petrogenesis and geodynamic setting(s) of anorthosites in Archean layered intrusions and Tethyan ophiolites has significant implications for crustal evolution and growth throughout Earth history. Archean anorthosite-bearing layered intrusions occur on every continent. Tethyan ophiolites occur in Europe, Africa, and Asia. In this contribution, the field, petrographic, petrological, and geochemical characteristics of 100 Tethyan anorthosite-bearing ophiolites and 155 Archean anorthosite-bearing layered intrusions are compared. Tethyan anorthosite-bearing ophiolites range from Devonian to Paleocene in age, are variably composite, contain anorthosites with highly calcic (An44-100) plagioclase and magmatic amphibole. These ophiolites formed predominantly at convergent plate margins, with some forming in mid-ocean ridge, continental rift, and mantle plume settings. The predominantly convergent plate margin tectonic setting of Tethyan anorthosite-bearing ophiolites is indicated by negative Nb and Ti anomalies and magmatic amphibole. Archean anorthosite-bearing layered intrusions are Eoarchean to Neoarchean in age, have megacrystic anorthosites with highly calcic (An20-100) plagioclase and magmatic amphibole and are interlayered with gabbros and leucogabbros and intrude pillow basalts. These Archean layered intrusions are interpreted to have predominantly formed at convergent plate margins, with the remainder forming in mantle plume, continental rift, oceanic plateau, post-orogenic, anorogenic, mid-ocean ridge, and passive continental margin settings. These layered intrusions predominantly crystallized from hydrous Ca- and Al-rich tholeiitic magmas. The field, petrographic and geochemical similarities between Archean and Tethyan anorthosites indicate that they were produced by similar geodynamic processes mainly in suprasubduction zone settings. We suggest that Archean anorthosite-bearing layered intrusions and spatially associated greenstone belts represent dismembered subduction-related Archean ophiolites

    Sex Differences and Autism: Brain Function during Verbal Fluency and Mental Rotation

    Get PDF
    Autism spectrum conditions (ASC) affect more males than females. This suggests that the neurobiology of autism: 1) may overlap with mechanisms underlying typical sex-differentiation or 2) alternately reflect sex-specificity in how autism is expressed in males and females. Here we used functional magnetic resonance imaging (fMRI) to test these alternate hypotheses. Fifteen men and fourteen women with Asperger syndrome (AS), and sixteen typically developing men and sixteen typically developing women underwent fMRI during performance of mental rotation and verbal fluency tasks. All groups performed the tasks equally well. On the verbal fluency task, despite equivalent task-performance, both males and females with AS showed enhanced activation of left occipitoparietal and inferior prefrontal activity compared to controls. During mental rotation, there was a significant diagnosis-by-sex interaction across occipital, temporal, parietal, middle frontal regions, with greater activation in AS males and typical females compared to AS females and typical males. These findings suggest a complex relationship between autism and sex that is differentially expressed in verbal and visuospatial domains

    FcRn Overexpression in Transgenic Mice Results in Augmented APC Activity and Robust Immune Response with Increased Diversity of Induced Antibodies

    Get PDF
    Our previous studies have shown that overexpression of bovine FcRn (bFcRn) in transgenic (Tg) mice leads to an increase in the humoral immune response, characterized by larger numbers of Ag-specific B cells and other immune cells in secondary lymphoid organs and higher levels of circulating Ag-specific antibodies (Abs). To gain additional insights into the mechanisms underlying this increase in humoral immune response, we further characterized the bFcRn Tg mice. Our Western blot analysis showed strong expression of the bFcRn transgene in peritoneal macrophages and bone marrow derived dendritic cells; and a quantitative PCR analysis demonstrated that the expression ratios of the bFcRn to mFcRn were 2.6- and 10-fold in these cells, respectively. We also found that overexpression of bFcRn enhances the phagocytosis of Ag-IgG immune complexes (ICs) by both macrophages and dendritic cells and significantly improves Ag presentation by dendritic cells. Finally, we determined that immunized bFcRn mice produce a much greater diversity of Ag-specific IgM, whereas only the levels, but not the diversity, of IgG is increased by overexpression of bFcRn. We suggest that the increase in diversity of IgG in Tg mice is prevented by a selective bias towards immunodominant epitopes of ovalbumin, which was used in this study as a model antigen. These results are also in line with our previous reports describing a substantial increase in the levels of Ag-specific IgG in FcRn Tg mice immunized with Ags that are weakly immunogenic and, therefore, not affected by immunodominance

    Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles

    Get PDF
    Warm mix asphalt (WMA) is gaining increased attention in the asphalt paving industry as an eco-friendly and sustainable technology. WMA technologies are favorable in producing asphalt mixtures at temperatures 20–60 °C lower in comparison to conventional hot mix asphalt. This saves non-renewable fossil fuels, reduces energy consumption, and minimizes vapors and greenhouse gas emissions in the production, placement and conservation processes of asphalt mixtures. At the same time, this temperature reduction must not reduce the performance of asphalt pavements in-field. Low aging resistance, high moisture susceptibility, and low durability are generally seen as substantial drawbacks of WMA, which can lead to inferior pavement performance, and increased maintenance costs. This is partly due to the fact that low production temperature may increase the amount of water molecules trapped in the asphalt mixture. As a potential remedy, here we use fumed silica nanoparticles (FSN) have shown excellent potential in enhancing moisture and aging susceptibility of asphalt binders. In this study, asphalt binder modification by means of FSN was investigated, considering the effects of short-term and long-term aging on the rheological, thermal, and microstructural binder properties. This research paves the way for optimizing WMA by nanoparticles to present enhanced green asphalt technology
    corecore