8 research outputs found

    Gelatin Soft Actuators: Benefits and Opportunities

    No full text
    Soft robots are being developed as implantable devices and surgical tools with increasing frequency. As this happens, new attention needs to be directed at the materials used to engineer these devices that interface with biological tissues. Biocompatibility will increase if traditional materials are replaced with biopolymers or proteins. Gelatin-based actuators are biocompatible, biodegradable, versatile, and tunable, making them ideal for biomedical and biomechanical applications. While building devices from protein-based materials will improve biocompatibility, these new materials also bring unique challenges. The properties of gelatin can be tuned with the addition of several additives, crosslinkers, and plasticizers to improve mechanical properties while altering the characteristic fluid absorption and cell proliferation. Here, we discuss a variety of different gelatin actuators that allow for a range of actuation motions including swelling, bending, folding, and twisting, with various actuation stimulants such as solvent, temperature, pneumatic pressure, electric field, magnetic field, or light. In this review, we examine the fabrication methods and applications of such materials for building soft robots. We also highlight some ways to further extend the use of gelatin for biomedical actuators including using fiber-reinforced gelatin, gelatin cellular solids, and gelatin coatings. The understanding of the current state-of-the-art of gelatin actuators and the methods to expand their usage may expand the scope and opportunities for implantable devices using soft hydrogel robotics

    Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning

    Get PDF
    Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffolds should recapitulate the native three-dimensional (3D) hierarchical fibrillar structure, possess biomimetic surface properties and demonstrate mechanical integrity, and in some tissues, anisotropy. Electrospinning is a popular technique used to fabricate anisotropic nanofiber scaffolds. However, it suffers from relatively low production rates and poor control of fiber alignment without substantial modifications to the fiber collector mechanism. Additionally, many biomaterials are not amenable for fabrication via high-voltage electrospinning methods. Hence, we reasoned that we could utilize rotary jet spinning (RJS) to fabricate highly aligned hybrid protein-polymer with tunable chemical and physical properties. In this study, we engineered highly aligned nanofiber constructs with robust fiber alignment from blends of the proteins collagen and gelatin, and the polymer poly-ε-caprolactone via RJS and electrospinning. RJS-spun fibers retain greater protein content on the surface and are also fabricated at a higher production rate compared to those fabricated via electrospinning. We measured increased fiber diameter and viscosity, and decreasing fiber alignment as protein content increased in RJS hybrid fibers. RJS nanofiber constructs also demonstrate highly anisotropic mechanical properties mimicking several biological tissue types. We demonstrate the bio-functionality of RJS scaffold fibers by testing their ability to support cell growth and maturation with a variety of cell types. Our highly anisotropic RJS fibers are therefore able to support cellular alignment, maturation and self-organization. The hybrid nanofiber constructs fabricated by RJS therefore have the potential to be used as scaffold material for a wide variety of biological tissues and organs, as an alternative to electrospinning

    The Role of Soft Robotic Micromachines in the Future of Medical Devices and Personalized Medicine

    No full text
    Developments in medical device design result in advances in wearable technologies, minimally invasive surgical techniques, and patient-specific approaches to medicine. In this review, we analyze the trajectory of biomedical and engineering approaches to soft robotics for healthcare applications. We review current literature across spatial scales and biocompatibility, focusing on engineering done at the biotic-abiotic interface. From traditional techniques for robot design to advances in tunable material chemistry, we look broadly at the field for opportunities to advance healthcare solutions in the future. We present an extracellular matrix-based robotic actuator and propose how biomaterials and proteins may influence the future of medical device design

    Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model

    Full text link
    Wounds in the fetus can heal without scarring. Consequently, biomaterials that attempt to recapitulate the biophysical and biochemical properties of fetal skin have emerged as promising pro-regenerative strategies. The extracellular matrix (ECM) protein fibronectin (Fn) in particular is believed to play a crucial role in directing this regenerative phenotype. Accordingly, Fn has been implicated in numerous wound healing studies, yet remains untested in its fibrillar conformation as found in fetal skin. Here, we show that high extensional (∼1.2 ×10 s) and shear (∼3 ×10 s) strain rates in rotary jet spinning (RJS) can drive high throughput Fn fibrillogenesis (∼10 mL/min), thus producing nanofiber scaffolds that are used to effectively enhance wound healing. When tested on a full-thickness wound mouse model, Fn nanofiber dressings not only accelerated wound closure, but also significantly improved tissue restoration, recovering dermal and epidermal structures as well as skin appendages and adipose tissue. Together, these results suggest that bioprotein nanofiber fabrication via RJS could set a new paradigm for enhancing wound healing and may thus find use in a variety of regenerative medicine applications
    corecore