115 research outputs found

    Diagnostic Value of Lumbar Facet Joint Injection: A Prospective Triple Cross-Over Study

    Get PDF
    The diagnosis “lumbar facet syndrome” is common and often indicates severe lumbar spine surgery procedures. It is doubtful whether a painful facet joint (FJ) can be identified by a single FJ block. The aim of this study was to clarify the validity of a single and placebo controlled bilateral FJ blocks using local anesthetics. A prospective single blinded triple cross-over study was performed. 60 patients (31 f, 29 m, mean age 53.2 yrs (22–73)) with chronic low back pain (mean pain persistance 31 months, 6 months of conservative treatment without success) admitted to a local orthopaedic department for surgical or conservative therapy of chronic LBP, were included in the study. Effect on pain reduction (10 point rating scale) was measured. The 60 subjects were divided into six groups with three defined sequences of fluoroscopically guided bilateral monosegmental lumbar FJ test injections in “oblique needle” technique: verum-(local anaesthetic-), placebo-(sodium chloride-) and sham-injection. Carry-over and periodic effects were evaluated and a descriptive and statistical analysis regarding the effectiveness, difference and equality of the FJ injections and the different responses was performed. The results show a high rate of non-response, which documents the lack of reliable and valid predictors for a positive response towards FJ blocks. There was a high rate of placebo reactions noted, including subjects who previously or later reacted positively to verum injections. Equivalence was shown among verum vs. placebo and partly vs. sham also. With regard to test validity criteria, a single intraarticular FJ block with local anesthetics is not useful to detect the pain-responsible FJ and therefore is no valid and reliable diagostic tool to specify indication of lumbar spine surgery. Comparative FJ blocks with local anesthetics and placebo-controls have to be interpretated carefully also, because they solely give no proper diagnosis on FJ being main pain generator

    Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretative problems

    Get PDF
    © 2016 Swedish Society for Anthropology and Geography Periglacial patterned ground (sorted circles and polygons) along an altitudinal profile at Juvflya in central Jotunheimen, southern Norway, is investigated using Schmidt-hammer exposure-age dating (SHD). The patterned ground surfaces exhibit R-value distributions with platycurtic modes, broad plateaus, narrow tails, and a negative skew. Sample sites located between 1500 and 1925 m a.s.l. indicate a distinct altitudinal gradient of increasing mean R-values towards higher altitudes interpreted as a chronological function. An established regional SHD calibration curve for Jotunheimen yielded mean boulder exposure ages in the range 6910 ± 510 to 8240 ± 495 years ago. These SHD ages are indicative of the timing of patterned ground formation, representing minimum ages for active boulder upfreezing and maximum ages for the stabilization of boulders in the encircling gutters. Despite uncertainties associated with the calibration curve and the age distribution of the boulders, the early-Holocene age of the patterned ground surfaces, the apparent cessation of major activity during the Holocene Thermal Maximum (HTM) and continuing lack of late-Holocene activity clarify existing understanding of the process dynamics and palaeoclimatic significance of large-scale sorted patterned ground as an indicator of a permafrost environment. The interpretation of SHD ages from patterned ground surfaces remains challenging, however, owing to their diachronous nature, the potential for a complex history of formation, and the influence of local, non-climatic factors

    Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific

    Get PDF
    Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific western subarctic gyre (WSG) revealed seasonal changes in δ15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting traps (DST; 100-200 m) and moored traps (MST; 200 and 500 m). All particles showed higher δ15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ15N(SUS) of 0.4-3.1 ‰ in the euphotic zone (EZ). The δ15N(SUS) signature was reflected by δ15 N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ15 N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ15 N(DST) variations of 2.4-7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ15 N(DST) vs. PP regression to δ15 N(MST) of 1.9-8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. Moreover, the monthly export ratio at 500 m was calculated using both estimated PP and measured organic carbon fluxes. Results suggest a 1.6 to 1.8 times more efficient transport of photosynthetically-fixed carbon to the intermediate layers occurs in summer/autumn rather than winter/spring

    The provocative lumbar facet joint

    Get PDF
    Low back pain is the most common pain symptom experienced by American adults and is the second most common reason for primary care physician visits. There are many structures in the lumbar spine that can serve as pain generators and often the etiology of low back pain is multifactorial. However, the facet joint has been increasingly recognized as an important cause of low back pain. Facet joint pain can be diagnosed with local anesthetic blocks of the medial branches or of the facet joints themselves. Subsequent radiofrequency lesioning of the medial branches can provide more long-term pain relief. Despite some of the pitfalls associated with facet joint blocks, they have been shown to be valid, safe, and reliable as a diagnostic tool. Medial branch denervation has shown some promise for the sustained control of lumbar facet joint-mediated pain, but at this time, there is insufficient evidence that it is a wholly efficacious treatment option. Developing a universal algorithm for evaluating facet joint-mediated pain and standard procedural techniques may facilitate the performance of larger outcome studies. This review article provides an overview of the anatomy, pathophysiology, diagnosis, and treatment of facet joint-mediated pain

    Pelvic Osteo-Arthropathy of Pregnancy

    No full text

    Nerve injuries sustained during warfare

    No full text
    corecore