284 research outputs found

    Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin

    Get PDF
    Middle Pennsylvanian (Desmoinesian) shelf carbonates in the southwestern Paradox basin display three superimposed orders of stratigraphic cyclicity with a systematic vertical succession of facies, cycle, and sequence stacking patterns. Fifth-order cycles [34 cycles in a 645-ft (197-m) section; average 20 ft (6.1 m) thick; mean period 29,000 years] are grouped into fourth-order sequences [average 100 ft (30 m) thick; mean period 257,000 years], which in turn stack vertically to define a third-order sequence [650+ ft (200+ m) thick; 2-3 m.y. duration]. Fifth-order cycles are composed of shallow ing-upward packages of predominantly subtidal shelf carbonates with sharp cycle boundaries (either exposure or flooding surfaces). Fifth-order cycles are packaged into fourth-order sequences bounded by regionally correlative subaerial exposure surfaces. These type 1 sequences contain a downdip, restricted lowstand wedge of evaporites and quartz clastics in topographic lows on the Paradox shelf (intrashelf depressions). The lowstand systems tract is overlain by a regionally correlative transgressive shaly mudstone (condensed section) and a highstand systems tract composed of thinning-upward, aggradational fifth-order cycles. Systematic variation in the thickness of fourth-order sequences (thinning upward followed by thickening upward) and systematic variations in the number of fifth-order cycles and fourth-order sequences (decreasing followed by increasing number) defines a third-order accommodation trend that is also regionally correlative. High-frequency cycles and sequences are interpreted as predominantly aggradational allocycles generated in response to composite fourth- and fifth-order glacio-eustatic sea-level fluctuations. Two different orbital forcing (Milankovitch) scenarios are evaluated to explain the composite stratigraphic cyclicity of the Paradox sequences, each of which is plausible given Desmoinesian age estimates. The cycle, sequence, and facies stacking patterns have been replicated by means of computer modeling by superimposing composite high-frequency glacio-eustasy atop regional subsidence using depth-dependent, sedimentation

    Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin

    Get PDF
    Middle Pennsylvanian (Desmoinesian) shelf carbonates in the southwestern Paradox basin display three superimposed orders of stratigraphic cyclicity with a systematic vertical succession of facies, cycle, and sequence stacking patterns. Fifth-order cycles [34 cycles in a 645-ft (197-m) section; average 20 ft (6.1 m) thick; mean period 29,000 years] are grouped into fourth-order sequences [average 100 ft (30 m) thick; mean period 257,000 years], which in turn stack vertically to define a third-order sequence [650+ ft (200+ m) thick; 2-3 m.y. duration]. Fifth-order cycles are composed of shallow ing-upward packages of predominantly subtidal shelf carbonates with sharp cycle boundaries (either exposure or flooding surfaces). Fifth-order cycles are packaged into fourth-order sequences bounded by regionally correlative subaerial exposure surfaces. These type 1 sequences contain a downdip, restricted lowstand wedge of evaporites and quartz clastics in topographic lows on the Paradox shelf (intrashelf depressions). The lowstand systems tract is overlain by a regionally correlative transgressive shaly mudstone (condensed section) and a highstand systems tract composed of thinning-upward, aggradational fifth-order cycles. Systematic variation in the thickness of fourth-order sequences (thinning upward followed by thickening upward) and systematic variations in the number of fifth-order cycles and fourth-order sequences (decreasing followed by increasing number) defines a third-order accommodation trend that is also regionally correlative. High-frequency cycles and sequences are interpreted as predominantly aggradational allocycles generated in response to composite fourth- and fifth-order glacio-eustatic sea-level fluctuations. Two different orbital forcing (Milankovitch) scenarios are evaluated to explain the composite stratigraphic cyclicity of the Paradox sequences, each of which is plausible given Desmoinesian age estimates. The cycle, sequence, and facies stacking patterns have been replicated by means of computer modeling by superimposing composite high-frequency glacio-eustasy atop regional subsidence using depth-dependent, sedimentation

    Universal description of S-wave meson spectra in a renormalized light-cone QCD-inspired model

    Full text link
    A light-cone QCD-inspired model, with the mass squared operator consisting of a harmonic oscillator potential as confinement and a Dirac-delta interaction, is used to study the S-wave meson spectra. The two parameters of the harmonic potential and quark masses are fixed by masses of rho(770), rho(1450), J/psi, psi(2S), K*(892) and B*. We apply a renormalization method to define the model, in which the pseudo-scalar ground state mass fixes the renormalized strength of the Dirac-delta interaction. The model presents an universal and satisfactory description of both singlet and triplet states of S-wave mesons and the corresponding radial excitations.Comment: RevTeX, 17 pages, 7 eps figures, to be published in Phys. Rev.

    High Pressure Insulator-Metal Transition in Molecular Fluid Oxygen

    Full text link
    We report the first experimental evidence for a metallic phase in fluid molecular oxygen. Our electrical conductivity measurements of fluid oxygen under dynamic quasi-isentropic compression show that a non-metal/metal transition occurs at 3.4 fold compression, 4500 K and 1.2 Mbar. We discuss the main features of the electrical conductivity dependence on density and temperature and give an interpretation of the nature of the electrical transport mechanisms in fluid oxygen at these extreme conditions.Comment: RevTeX, 4 figure

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work

    Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea

    Get PDF
    Microbial production of methane is an important terminal metabolic process during organic matter degradation in marine sediments. It is generally acknowledged that hydrogenotrophic and acetoclastic methanogenesis constitute the dominant pathways of methane production; the importance of methanogenesis from methylated compounds remains poorly understood. We conducted various biogeochemical and molecular genetic analyses to characterize substrate availability, rates of methanogenesis, and methanogen community composition, and further evaluated the contribution of different substrates and pathways for methane production in deltaic surface and subsurface sediments of the Western Mediterranean Sea. Major substrates representing three methanogenic pathways, including H2, acetate, and methanol, trimethylamine (TMA), and dimethylsulfide (DMS), were detected in the pore waters and sediments, and exhibited variability over depth and between sites. In accompanying incubation experiments, methanogenesis rates from various 14C labeled substrates varied as well, suggesting that environmental factors, such as sulfate concentration and organic matter quality, could significantly influence the relative importance of individual pathway. In particular, methylotrophic and hydrogenotrophic methanogenesis contributed to the presence of micromolar methane concentrations in the sulfate reduction zone, with methanogenesis from methanol accounting for up to 98% of the total methane production in the topmost surface sediment. In the sulfate-depleted zone, hydrogenotrophic methanogenesis was the dominant methanogenic pathway (67–98%), and enhanced methane production from acetate was observed in organic-rich sediment (up to 31%). Methyl coenzyme M reductase gene (mcrA) analysis revealed that the composition of methanogenic communities was generally consistent with the distribution of methanogenic activity from different substrates. This study provides the first quantitative assessment of methylotrophic methanogenesis in marine sediments and has important implications for marine methane cycling. The occurrence of methylotrophic methanogenesis in surface sediments could fuel the anaerobic oxidation of methane (AOM) in the shallow sulfate reduction zone. Release of methane produced from methylotrophic methanogenesis could be a source of methane efflux to the water column, thus influencing the benthic methane budgets

    A hierarchical latent response model for inferences about examinee engagement in terms of guessing and item‐level non‐response

    Get PDF
    In low‐stakes assessments, test performance has few or no consequences for examinees themselves, so that examinees may not be fully engaged when answering the items. Instead of engaging in solution behaviour, disengaged examinees might randomly guess or generate no response at all. When ignored, examinee disengagement poses a severe threat to the validity of results obtained from low‐stakes assessments. Statistical modelling approaches in educational measurement have been proposed that account for non‐response or for guessing, but do not consider both types of disengaged behaviour simultaneously. We bring together research on modelling examinee engagement and research on missing values and present a hierarchical latent response model for identifying and modelling the processes associated with examinee disengagement jointly with the processes associated with engaged responses. To that end, we employ a mixture model that identifies disengagement at the item‐by‐examinee level by assuming different data‐generating processes underlying item responses and omissions, respectively, as well as response times associated with engaged and disengaged behaviour. By modelling examinee engagement with a latent response framework, the model allows assessing how examinee engagement relates to ability and speed as well as to identify items that are likely to evoke disengaged test‐taking behaviour. An illustration of the model by means of an application to real data is presented

    Effect of Systemic Hypertension With Versus Without Left Ventricular Hypertrophy on the Progression of Atrial Fibrillation (from the Euro Heart Survey).

    Get PDF
    Hypertension is a risk factor for both progression of atrial fibrillation (AF) and development of AF-related complications, that is major adverse cardiac and cerebrovascular events (MACCE). It is unknown whether left ventricular hypertrophy (LVH) as a consequence of hypertension is also a risk factor for both these end points. We aimed to assess this in low-risk AF patients, also assessing gender-related differences. We included 799 patients from the Euro Heart Survey with nonvalvular AF and a baseline echocardiogram. Patients with and without hypertension were included. End points after 1 year were occurrence of AF progression, that is paroxysmal AF becoming persistent and/or permanent AF, and MACCE. Echocardiographic LVH was present in 33% of 379 hypertensive patients. AF progression after 1 year occurred in 10.2% of 373 patients with rhythm follow-up. In hypertensive patients with LVH, AF progression occurred more frequently as compared with hypertensive patients without LVH (23.3% vs 8.8%, p = 0.011). In hypertensive AF patients, LVH was the most important multivariably adjusted determinant of AF progression on multivariable logistic regression (odds ratio 4.84, 95% confidence interval 1.70 to 13.78, p = 0.003). This effect was only seen in male patients (27.5% vs 5.8%, p = 0.002), while in female hypertensive patients, no differences were found in AF progression rates regarding the presence or absence of LVH (15.2% vs 15.0%, p = 0.999). No differences were seen in MACCE for hypertensive patients with and without LVH. In conclusion, in men with hypertension, LVH is associated with AF progression. This association seems to be absent in hypertensive women

    Progression From Paroxysmal to Persistent Atrial Fibrillation. Clinical Correlates and Prognosis

    Get PDF
    Objectives: We investigated clinical correlates of atrial fibrillation (AF) progression and evaluated the prognosis of patients demonstrating AF progression in a large population. Background: Progression of paroxysmal AF to more sustained forms is frequently seen. However, not all patients will progress to persistent AF. Methods: We included 1,219 patients with paroxysmal AF who participated in the Euro Heart Survey on AF and had a known rhythm status at follow-up. Patients who experienced AF progression after 1 year of follow-up were identified. Results: Progression of AF occurred in 178 (15%) patients. Multivariate analysis showed that heart failure, age, previous transient ischemic attack or stroke, chronic obstructive pulmonary disease, and hypertension were the only independent predictors of AF progression. Using the regression coefficient as a benchmark, we calculated the HATCH score. Nearly 50% of the patients with a HATCH score >5 progressed to persistent AF compared with only 6% of the patients with a HATCH score of 0. During follow-up, patients with AF progression were more often admitted to the hospital and had more major adverse cardiovascular events. Conclusions: A substantial number of patients progress to sustained AF within 1 year. The clinical outcome of these patients regarding hospital admissions and major adverse cardiovascular events was worse compared with patients demonstrating no AF progression. Factors known to cause atrial structural remodeling (age and underlying heart disease) were independent predictors of AF progression. The HATCH score may help to identify patients who are likely to progress to sustained forms of AF in the near future. \ua9 2010 American College of Cardiology Foundation

    Exercise therapy in Type 2 diabetes

    Get PDF
    Structured exercise is considered an important cornerstone to achieve good glycemic control and improve cardiovascular risk profile in Type 2 diabetes. Current clinical guidelines acknowledge the therapeutic strength of exercise intervention. This paper reviews the wide pathophysiological problems associated with Type 2 diabetes and discusses the benefits of exercise therapy on phenotype characteristics, glycemic control and cardiovascular risk profile in Type 2 diabetes patients. Based on the currently available literature, it is concluded that Type 2 diabetes patients should be stimulated to participate in specifically designed exercise intervention programs. More attention should be paid to cardiovascular and musculoskeletal deconditioning as well as motivational factors to improve long-term treatment adherence and clinical efficacy. More clinical research is warranted to establish the efficacy of exercise intervention in a more differentiated approach for Type 2 diabetes subpopulations within different stages of the disease and various levels of co-morbidity
    corecore