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In low-stakes assessments, test performance has few or no consequences for examinees

themselves, so that examinees may not be fully engaged when answering the items.

Instead of engaging in solution behaviour, disengaged examinees might randomly guess or

generate no response at all. When ignored, examinee disengagement poses a severe

threat to the validity of results obtained from low-stakes assessments. Statistical

modelling approaches in educational measurement have been proposed that account for

non-response or for guessing, but do not consider both types of disengaged behaviour

simultaneously. We bring together research on modelling examinee engagement and

researchonmissing values and present a hierarchical latent responsemodel for identifying

and modelling the processes associated with examinee disengagement jointly with the

processes associated with engaged responses. To that end, we employ a mixture model

that identifies disengagement at the item-by-examinee level by assuming different data-

generating processes underlying item responses and omissions, respectively, as well as

response times associated with engaged and disengaged behaviour. By modelling

examinee engagementwith a latent response framework, themodel allows assessing how

examinee engagement relates to ability and speed aswell as to identify items that are likely

to evoke disengaged test-taking behaviour. An illustration of the model by means of an

application to real data is presented.

1. Introduction

The aim of large-scale assessments (LSAs) is tomeasure examinee competencies using test
items. In doing so, it is assumed that examinees actively try to determine the correct

answer to every item by employing their abilities (Schnipke & Scrams, 1997; Wang & Xu,

2015). Most comparative LSAs, however, are low-stakes for examinees and aim at system-

level comparisons. As such, examinee test performance in most LSAs has few or no

consequences for examinees themselves and examinees may not be fully engaged when

attempting the items. When disengaged, examinees might attempt items without

applying their abilities, but instead proceed quickly through the assessment by randomly

guessing on multiple-choice (MC) items, answering items with an open-response (OR)
format only perfunctorily, or generating no response at all (Verbi�c& Tomi�c, 2009;Wise &
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Gao, 2017). Such disengaged test-taking behaviour poses a severe threat to the validity of

results obtained from LSAs since test scores assumed to reflect the level of competency

may be confoundedwith the level of disengagement (Braun, Kirsch, & Yamamoto, 2011).

Identifying and understanding the processes associated with examinee disengagement is
therefore paramount for drawing valid inferences on examinee ability.

In this study, we argue that both rapid guesses and item omissions can be understood

as indicators of examinee disengagement (see Wise & Gao, 2017). To capture the

underlying processes, we bring together research on modelling examinee engagement

and research on item-level non-response and provide a generalized modelling framework

that identifies disengagement by jointly considering information on responses, omissions,

and response times (RTs).

The remainder of this article is structured as follows: First, we review current
approaches for identifying examinee disengagement as well as for handling item

omissions. Second, we present a hierarchical latent response framework for examinee

disengagement in terms of guessing and omitting. We then evaluate the statistical

performance of the proposed model, illustrate how it differs from current approaches for

identifying examinee disengagement and handling item omissions, and illustrate its

application employing data from the Programme for International Student Assessment

(PISA) 2015.

2. Previous approaches for identifying and handling disengaged behaviour

2.1. Guessing and perfunctory answers

Previous approaches have conceptualized examinee disengagement in terms of rapid

guesses on MC items and perfunctory answers on OR items. Such disengaged observed

item responses typically showmeasurement properties that differ from those of engaged
responses (Cao& Stokes, 2008;Meyer, 2010; Schnipke&Scrams, 1997;Wang&Xu, 2015;

Yamamoto & Everson, 1997). As a result, not considering that a portion of observed

responses may stem from disengaged test-taking behaviour potentially yields biased and

less efficient person and item parameter estimates (Cao & Stokes, 2008; Pokropek, 2016;

Rios, Guo, Mao, & Liu, 2017; Wang & Xu, 2015). To mitigate these challenges, various

procedures for identifying and filtering disengaged responses have been suggested

(Bhola, 1994; Goldhammer, Martens, Christoph, & L€udtke, 2016; Schnipke, 1996;

Schnipke & Scrams, 1997; Wang & Xu, 2015; Wise & DeMars, 2005, 2006).

2.1.1. Response-time-based scoring techniques

InRT-based scoringmethods for identifying and filtering disengaged responses, responses

associated with RTs below a certain threshold are considered to be rapid guesses.

Different approaches exist for establishing these thresholds. Themost heuristic threshold

method is to define a common threshold for all items representing the minimum amount

of time needed to give an engaged response (Wise, Kingsbury, Thomason, &Kong, 2004).
Item-specific thresholds can be established by setting the threshold to, for example, 10%

of the average time (Wise &Ma, 2012), by visually assessing bimodal RT distributions for a

distinctive gap (Wise, Pastor, & Kong, 2009), or by assessing RT distributions jointly with

the conditional proportion correct in order to identify an RT threshold at which accuracy

exceeds what would be expected from random responding (Goldhammer et al., 2016;

Guo et al., 2016; Lee & Jia, 2014).
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2.1.2. Model-based approaches

Model-based approaches aiming to identify disengaged test-taking behaviour usually apply

mixture modelling techniques, with responses, and, if considered, RTs assumed to stem

from two different processes: solution behaviour and rapid guessing behaviour. For
responses stemming from solution behaviour, customary item response theory (IRT)

models are assumed. That is, probability correct is modelled as a function of examinee

ability and item difficulty. Responses stemming from rapid guessing processes are

assumed to contain no information on ability; probability correct under disengaged

behaviour is thus assumed to correspond to the probability of guessing correctly at chance

level (Schnipke & Scrams, 1997; Wang & Xu, 2015). RTs are either assumed to stem from

different lognormal distributions with different means and variances associated with

solution and randomguessing behaviour (Meyer, 2010; Schnipke&Scrams, 1997;Wang&
Xu, 2015) or employed to predict latent class membership (Pokropek, 2016).

2.1.3. Assumptions and limitations

RT-based scoring techniques for identifying examinee disengagement are rather heuristic

andmight considerably disagree in the rate of responses classified as rapid guesses (Lee &

Jia, 2014) or perfunctory answers (Goldhammer et al., 2016). For instance, Goldhammer

et al. (2016) have reported proportions of perfunctory answers ranging from 0.05% to
8.20% for different threshold methods applied to the same data set. Mixture models for

disengaged behaviour, on the other hand, often come with strong assumptions regarding

the processes underlying examinee disengagement. In mixture models for disengaged

behaviour, mixing proportions are allowed at the population (Meyer, 2010), examinee

(Cao & Stokes, 2008; Mislevy & Verhelst, 1990; Wang & Xu, 2015), item (Schnipke &

Scrams, 1997) or item-by-examinee level (Pokropek, 2016). While models allowing for

varying mixing proportions at the item level assume that items can evoke disengaged

behaviour to a different degree, they assume all examinees to be equally prone to show
disengaged behaviour. Models assuming examinee-specific mixing proportions allow for

the probability of being disengaged to vary across examinees, while the proportion of

disengaged responses is assumed to be constant across items. The probability of

disengaged responses, however, has repeatedly been shown to be related to both

examinee characteristics such as academic ability or achievement goals and item

characteristics such as response format or position (Goldhammer et al., 2016; Lee & Jia,

2014;Wise et al., 2009). Considering this whenmodelling examinee engagement renders

it necessary to allow for mixing proportions at the item-by-examinee level. To our
knowledge, the grade of membership framework presented by Erosheva (2002) and

adapted for identifying examinee disengagement by Pokropek (2016) is the only

framework that allows for mixing proportions at the item-by-examinee level. It does so by

regressing item-by-examinee-level mixing proportions on the associated RTs.

In addition, mixturemodels for identifying examinee disengagement do notmodel the

probability of being engaged jointly with ability but rather as an independent process.

Thus, these models assume ability and engagement to be unrelated constructs. In RT-

based scoring approaches, on the other hand, item responses identified to be the result of
guessing behaviour are often coded as missing and therefore ignored when estimating

ability. Doing so comes with the assumption that the missing responses induced through

such filtering techniques are ignorable in the sense that they aremissing at random (MAR)

given the observed (engaged) responses and the background variables considered, and

that the processes leading to disengaged item responses are unrelated to ability
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(Pokropek, 2016; Rios et al., 2017; Rubin, 1976). A rich body of research, however,

suggests that motivation and the tendency to show guessing behaviour are indeed related

to ability (Boe, May, & Boruch, 2002; Braun et al., 2011; Goldhammer et al., 2016; Wise &

DeMars, 2005; Wise et al., 2009). Not taking this into account has been shown to yield
biased ability estimates (Pokropek, 2016; Rios et al., 2017). To overcome these limitations,

there is a need for a model-based approach that allows for the probability of observing

disengaged behaviour to vary at the item-by-examinee level, as well as joint modelling of

the processes underlying examinee disengagement and ability.

2.2. Omissions

Various studies have related the occurrence of item omissions to lack of examinee
motivation (Cosgrove, 2011; Jakwerth & Stancavage, 2003; K€ohler, Pohl, & Carstensen,

2015a; Verbi�c & Tomi�c, 2009; Wise & Gao, 2017). Decline in test scores over time, for

instance, has been attributed to a decline in examinee motivation, with an increase in

omission rates taken as an indicator of examinee disengagement (Cosgrove, 2011; Sachse,

Mahler, & Pohl, 2019). Likewise, it has been suggested to employ the rate of item

omissions on background questionnaires as an indicator of disengagement in cognitive

assessments, with the rationale being that examinees who are not motivated to fill out the

background questionnaire might also be less motivated to engage with the items of the
cognitive assessment (Boe et al., 2002).

Notwithstanding, there is an ongoing discussion about the treatment of item

omissions in the cognitive assessments of LSAs. Operationally in LSAs there is

considerable variety in the treatment of item omissions, where omissions are either

ignored, scored as incorrect, or scored as partially correct (see Pohl, Gr€afe, & Rose, 2014,

for an overview). While scoring item omissions as wrong assumes the probability of a

correct response to an omitted item to be zero (Rose, von Davier, & Xu, 2010), ignoring

item omissions implies ignorability (Rose et al., 2010). In the case that ignorability does
not hold, ignoring missing data jeopardizes validity of inference and can induce bias to

person and item parameter estimates (de Ayala, Plake, & Impara, 2001; Culbertson, 2011;

Finch, 2008; K€ohler, Pohl, & Carstensen, 2015b, 2017; Pohl et al., 2014; Rose, 2013; Rose

et al., 2010).

2.2.1. Response-time-based scoring techniques

RT-based scoring techniques for item omissions aim to distinguish item omissions
occurring due to processes different from and similar to those operatingwhen examinees

generate (engaged) responses. For itemomissions associatedwith RTs remarkably shorter

than RTs associated with observed responses, it is assumed that the examinee did not

engage with the item but skipped it without trying to solve it. Item omissions associated

with RTs that do not notably differ from RTs associated with (wrong) observed responses

are assumed to have occurred for skill-related reasons, since the examinee engaged

sufficiently long with the item to generate a response, but decided not to. To distinguish

between these two types of omissions, the Programme for the International Assessment of
Adult Competencies (PIAAC) employs a 5-s scoring rule, where item omissions associated

with RTs exceeding 5 s are treated as wrong. Otherwise, item omissions are considered

not attempted and treated as missing responses in all further analyses (Yamamoto,

Khorramdel, & von Davier, 2013). Recent approaches for RT-based scoring of omitted

responses extend this rationale by allowing for item-specific, empirically derived
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thresholds (Frey, Spoden, Goldhammer, & Wenzel, 2018; Weeks, von Davier, &

Yamamoto, 2016).

2.2.2. Model-based approaches

Inmodel-based approaches for non-ignorable itemomissions, themissingnessmechanism

assumed to underlie itemomissions is usuallymodelled via an additionalmanifest or latent

variablewhich represents the examinees’ propensity to omit items (Holman&Glas, 2005;

O’Muircheartaigh & Moustaki, 1999; Rose et al., 2010), such that response and omission

behaviour are modelled jointly.

For response indicators uij, representing person i’s response on item j, customary IRT

models are employed, with the probability of a correct response being modelled as a
function of ability hi and item difficulty bj:

pðuij ¼ 1Þ ¼ expðhi � bjÞ
1þ expðhi � bjÞ : ð1Þ

Omission indicators dij contain information on whether examinee i generated a

response to item j, with 1 indicating an item omission and 0 an observed response. The

probability of an item omission is modelled as

pðdij ¼ 1Þ ¼ expðni � ajÞ
1þ expðni � ajÞ ; ð2Þ

with ξi denoting person omission propensity and aj item omission difficulty. A

multivariate normal distribution is assumed for ability and omission propensity.
Traditionally, model-based approaches have relied only on information as towhether a

response has been observed or not. Based on the work of Pohl, Ulitzsch, and von Davier

(2019), Ulitzsch, von Davier, and Pohl (2019) have extendedmodel-based approaches for

non-ignorable item omissions by integrating them with models for RTs, allowing for

different processes determining the time examinees require to generate a response or to

omit an item. Doing so allows assessment of the degree to which these processes differ

and, as such, for a finer-grained understanding of the occurrence of item omissions aswell

as test-taking behaviour in general.

2.2.3. Assumptions and limitations

Although RT-based scoring techniques for item omissions allow different types of item

omissions to be distinguished, they assume that either item omissions are ignorable or the

probability of solving an omitted item is zero (Lord, 1983; Rose, 2013). By modelling

omission propensity jointly with ability, model-based approaches for item omissions

overcome these assumptions, allow to assess how examinee ability relates to the
probability of omitting responses, andhave been shown to yield unbiased item andperson

parameter estimates, evenwhen themissingnessmechanism is non-ignorable in the sense

that parameters of the response model are not distinct from those of the missingness

model (Holman & Glas, 2005; Pohl et al., 2014; Rose et al., 2010; Ulitzsch et al., 2019). If

onewere to consider omissions as indicators of disengaged behaviourwhile assuming that

all observed responses stem from solution behaviour and that examinees do not omit

while engaged, the omission propensity in these models can be understood as an

A latent response model for examinee engagement 5



examinee disengagement parameter that is modelled jointly with ability. As such, these

models overcome the assumption of independence between the processes governing

disengaged behaviour and ability inherent to model-based approaches for disengaged

guessing. They are, however, restrictive in that they assume all item omissions to stem
from the samedata-generating processes and all observed responses to stem fromengaged

response processes.

3. Proposed model

Conceptualizing disengaged test-taking behaviour in terms of both randomly guessing (or
producing perfunctory answers) and omitting, we present a hierarchical latent response

model for identifying and modelling the processes associated with examinee disengage-

ment jointly with the processes associated with engaged responses.1 We thereby bring

together research on examinee disengagement and non-response behaviour. Addressing

limitations of previously developed approaches, the speed-accuracy + engagement

(SA+E) model allows for item-by-examinee-specific engagement probabilities, defines

engagement in terms of both random guessing (or perfunctory answers) and disengaged

item omissions, and models processes associated with examinee disengagement jointly
with ability. To that end, we employ mixture models that identify disengagement at the

item-by-examinee level by assuming different data-generating processes underlying item

responses, omissions, and RTs associated with engaged and disengaged behaviour. Item-

by-examinee mixing proportions are modelled with a latent response framework

employing an IRT model. The framework is shown in Figure 1, where the left- and right-

hand parts depict the models for disengaged and engaged behaviour, respectively.

Following Wang and Xu (2015), latent engagement indicators Dij denote whether

examinee i has engaged in solution behaviourwhen attempting item j or not, with 0 and 1
indicating disengaged and solution behaviour, respectively. Whether or not examinee i

generated an engaged response to item j is not observable. Engaged and disengaged

behaviours, however, are assumed to result in different distributions of item responses,

omissions, and RTs.

3.1. Engaged behaviour

When attempting items in an engaged manner, examinees are assumed to generate
engaged responses to all items attempted. That is, if Dij = 1 the probability of a correct

response on response indicator uij is assumed to be a function of person ability hi and the
item’s difficulty bj. In line with the frameworks of analysis implemented in major LSAs

such as PISA (OECD, 2017), we present the framework employing a Raschmodel for item

responses as given by equation (1).

Following van der Linden (2007) and Wang and Xu (2015), RTs tij, denoting the time

examinee i interacted with item j, are assumed to follow a lognormal distribution

1Note that in the proposedmodel, examinee disengagement is defined in terms of both guessing (or perfunctory
answers) and omitting. The model can easily be simplified to assuming that disengaged examinees either only
guess or only omit in the case where no omissions are observed, or for theory-based reasons all observed
responses can be assumed to stem from engaged response processes. In the Supporting Information, simplified
versions of themodel are presented and their relationship to other state-of-the-art approaches for item omissions
and disengaged guesses are discussed.
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governed by examinee working speed si and item time intensity bj when associated with

an engaged response:

lnðtijjDij ¼ 1Þ�N ðbj � si;r
2
EÞ: ð3Þ

For reasons of simplicity, we assume a common residual variance r2
E (van der Linden,

2007).
Item omissions are assumed not to occur when examinees are engaged. We therefore

fix the probability of observing an item omission to zero if Dij = 1. Thus,

pðdij ¼ 1jDij ¼ 1Þ ¼ 0: ð4Þ

Conversely, this restriction corresponds to the assumption that examinee disengagement

is observable in the case an item is omitted.

3.2. Disengaged behaviour

When disengaged (Dij = 0), we assume that examinees either randomly guess or omit.

Whether examinees omit or guess is modelled via an examinee-specific but not item-

specific omission probability oi which describes the probability that examinee i omits
(dij = 1) rather than guesses (dij = 0) when attempting an item in a disengaged manner. oi
is modelled as a function of ability hi and speed si via a logistic regression, thereby allowing

for differences in omission behaviour depending on the examinee’s ability and speed level:

pðdij ¼ 1jDij ¼ 0Þ ¼ oi ¼ expðc0 þ c1hi þ c2siÞ
1þ expðc0 þ c1hi þ c2siÞ

: ð5Þ

For observed disengaged responses, the probability of a correct guess is assumed to be

determined by a common guessing parameter c (Schnipke & Scrams, 1997; Wang & Xu,

2015):

pðuij ¼ 1jDij ¼ 0Þ ¼ c: ð6Þ

Figure 1. Hierarchical latent response SA+E framework.
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Following Schnipke and Scrams (1997), we assume that neither person nor item

characteristics affect the distribution of RTswhen examinees are disengaged and produce

responses by guessing or omit items. Thus, underDij = 0, RTs for all items and examinees

are assumed to follow a lognormal distribution governed by a common mean across all
items and examinees bD and variance r2

D:

lnðtijjDij ¼ 0Þ�N ðbD;r2
DÞ: ð7Þ

In the proposed framework, it is assumed that examinees tend to require less time

to interact with an item when disengaged than to read, understand, and generate an

engaged response to the item (Wise, 2017). We incorporate this assumption by

assuming that all time intensities for the RTs associated with engaged behaviour bj are
the sum of the common mean bD and an item-specific, positive offset parameter b�j .
That is,

bj ¼ bD þ b�j ; where b�j � 0: ð8Þ

The offset parameter b�j indicates how much longer examinees need to engage with the

item to generate an engaged response rather than to omit or guess.

3.3. Higher-order models

Whether examinee i engaged in solution behaviour when attempting item j is only

partially observable; however, it determines the measurement properties of the observed

responses and associated RTs. Engagement indicators Dij thus represent latent response

variables (Maris, 1995). For the probability that examinee i is engaged when attempting

item j, p(Dij = 1), we assume a Rasch model with

pðDij ¼ 1Þ ¼ expð/i � ijÞ
1þ expð/i � ijÞ ; ð9Þ

where /i denotes examinee i’s engagement and ij gives item j’s engagement difficulty.

Examinee engagement determines whether examinees tend to approach items

engagedly. Engagement difficulty determines how easily examinees interact with an

item engagedly.

All person parameters are assumed to be multivariate normally distributed with mean

vector

lP ¼ ðl/; lh; lsÞ; ð10Þ

and covariance matrix

RP ¼
r2
/ r/h r/s

r/h r2
h rh s

r/ s rh s r2
s

0
@

1
A: ð11Þ
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When aRaschmodel is employed for responses and engagement indicators, themodel can

be identified by setting the expectations of /, h, and s to zero. Item parameters are

modelled as fixed effects.2

The proposed model’s likelihood can be written as

L ¼ QN
i¼1

QK
j¼1

pðDij ¼ 1j/i; ijÞð1� dijÞpðuijjhi; bjÞf ðtijjsi; bj; r2EÞ
�

þ

ð1� pðDij ¼ 1j/i; ijÞÞpðdijjc; hi; siÞpðuijjcÞð1�dijÞf ðtijjbD;r2
DÞÞ � gð/; h; sjlP ;RPÞ:

ð12Þ

As can be seen, the framework allows formixture distributions of responses andRTs at the

item-by-examinee level, with the first row representing the model for engaged and the

second the model for disengaged test-taking behaviour. The mixing proportions

pðDij ¼ 1j/i; ijÞ and 1� pðDij ¼ 1j/i; ijÞ are modelled as a function of examinee
engagement /i and engagement difficulty parameters ij with an IRT model.

gð/; h; sjlP ;RPÞ denotes the multivariate normal density of the person parameters. Note

that in the case where examinee i omits item j, the first row does not contribute to the

likelihood function, thereby incorporating the assumption that examinee i’s engagement

status is observable in the case where dij = 1.

4. Prior distributions

Bayesian estimation techniques are employed to facilitate model estimation. For the prior

distribution for the person parameter variance–covariance matrix RP , we follow a

separation strategy where the correlation matrix XP and person parameter standard

deviations SP are separated out (Barnard, McCulloch, & Meng, 2000), that is,

RP ¼ diagðSPÞXPdiagðSPÞ: ð12Þ

Such separation strategies have been shown to yield unbiased parameter estimates of

variances and correlations even under conditions with smaller sample sizes (Alvarez,

Niemi, & Simpson, 2014). Furthermore, separation strategies circumvent the depen-

dencies between variances and correlations inherent to inverse Wishart priors (Alvarez

et al., 2014; Gelman & Hill, 2007). Following recommendations by the Stan Develop-

ment Team (2017), we employ an LKJ prior (Lewandowski, Kurowicka, & Joe, 2009)

with shape 1 for the correlation matrix XP , implying a uniform distribution on the
correlation parameters and half Cauchy priors with location 0 and scale 5 for each

element of SP .
Following Fox (2010), we employ diffuse normal priors with mean 0 and standard

deviation 10 for all engagement difficulties ij, difficulties bj, time intensity offsets b�j , as
well as the common mean bD and each element of the vector of logistic regression

parameters c. For residual standard deviations of logarithmized engaged RTs rE and the

common standard deviation rDwe suggest diffuse half Cauchy priors with location 0 and

scale 5. For the common guessing parameter cwe employ diffuse beta priors with B(1,1).

2 The model can easily be extended to assuming a joint distribution for item parameters. These are, however,
challenging to estimate without bias under conditions with few items. Neglecting correlations of item
parameters, in turn, has been shownnot to affect unbiasedness and efficiency of parameter estimates (Molenaar,
Oberski, Vermunt, & De Boeck, 2016; Molenaar, Tuerlinckx, & van der Maas, 2015).
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5. Parameter recovery

To investigate estimability of the SA+E model, a simulation study was performed. We
addressed two major research questions. First, the simulation study served to investigate

whether true parameter values can satisfactorily be recovered under realistic conditions.

Second, we aimed to identify boundary conditions concerning the sparseness of

information on examinee disengagement for the detection thereof.

5.1. Data generation

Data were generated according to the SA+E model, employing R version 3.5.1 (R
Development Core Team, 2017). To evaluate model performance under realistic

research conditions, data-generating values were chosen to resemble parameter

estimates reported in the empirical example below. To identify possible challenging

conditions, we varied factors that are relevant for data sparseness in disengaged

behaviour. Four variables were manipulated: the number of examinees (250, 500,

1,000), representing low, medium, and large sample sizes per item encountered in

LSAs with balanced incomplete block designs (Gonzalez & Rutkowski, 2010); the

number of items (10, 20); the rate of disengaged behaviour in the data set of size
N 9 K (5%, 10%), reflecting rates of disengaged rapid guesses typically found in data

from LSAs (Goldhammer et al., 2016; Lee & Jia, 2014) as well as low to medium

omission rates (OECD, 2013); and the percentage of omissions as opposed to

guessing in disengaged behaviour (10%, 50%, 90%). Since omissions are assumed to

occur only when examinees are disengaged, we suspect that sufficiently high

omission rates facilitate estimation. Estimation might be more challenging when

examinees mainly guess when disengaged, or when guessing is hard to detect due to

low incidence.
Our manipulation of variables led to 3 9 2 9 2 9 3 = 36 conditions. For each

condition, 50 data sets were generated. Using the MVRNORM function from the MASS

package (Venables & Ripley, 2002), person parameters were randomly drawn from a

multivariate normal distribution. We set engagement /, ability h, and speed s variances
to 3.50, 1.00, and 0.05, respectively. Correlations of engagement with ability, cor(/,h),
and speed, cor(/,s), were set to .55 and .20, respectively. The correlation between

ability and speed, cor(h,s), was set to �.40. Such negative correlations between ability

h and speed s indicate that examinees showing higher levels of ability operate at a
lower speed level and are rather common for low-stakes LSAs (Goldhammer et al.,

2014). For all item parameter types, we considered five different values, stemming from

sequences fi0 þ 0:5lg5l¼1 for engagement difficulties i, f�1þ 0:5lg5l¼1 for difficulties b,

and f3þ 0:25lg5l¼1 for time intensities b. For tests of length K = 10 and K = 20 these

sequences were repeated twice and four times, respectively. To obtain rates of

disengaged behaviour of 5% and 10%, i0 was set to �5 and �4.25, respectively. This

resulted in item-level disengagement rates ranging from 1.11% to 8.20% and from 2.35%

to 17.38% under conditions with overall disengagement rates of 5% and 10%,
respectively. The logistic regression parameters were set to ch ¼ �1 and cs ¼ �10. For

omission rates in disengaged behaviour of 10%, 50%, and 90%, the intercept was set to

c0 = �3, c0 = 0, and c0 = 3, respectively. The probability correct for disengaged

responses was set to c = .25 for all items. Logarithmized disengaged RTs were drawn

from a normal distribution with mean bD = 3 and variance r2
D = 1.95. The common

residual variance for logarithmized engaged RTs was set to r2
D = 0.15.
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5.2. Estimation procedure

Bayesian estimation was conducted using Stan version 2.18 (Carpenter et al., 2017),

employing the RSTAN package (Guo, Gabry, & Goodrich, 2018) for R version 3.5.1 (R

Development Core Team, 2017). For sampling from the posterior distributions, Stan
employs the No-U-Turn sampler (Hoffman & Gelman, 2014), an adaptive form of

Hamiltonian Monte Carlo sampling (Neal, 2011). Data were analysed employing the SA+E
model. On each data set, we ran four Markov chain Monte Carlo (MCMC) chains with

10,000 iterations each, with the first 5,000 employed as warm-up. The number of

iterationswas chosenbased onconclusions drawn frompre-analyses, inspecting potential

scale reduction factor (PSRF) values, trace plots, and effective sample sizes (ESSs). Stan

code for the SA+E model is provided in the Supporting Information.

5.3. Results

Statistical performance was evaluated in terms of convergence and efficiency of the

MCMC chains as well as bias and efficiency of parameter estimates. We assessed

convergence on the basis of PSRF values. Replications with PSRF values below 1.10 for all

parameters were considered as being converged (Gelman & Rubin, 1992; Gelman &

Shirley, 2011). The efficiency of the estimation procedure was evaluated by considering

ESS (Kass, Carlin, Gelman, & Neal, 1998), indicating the degree of precision with which
the empiricalmean of theMCMCchains approximates the expected value of the posterior

distribution (L€udtke, Robitzsch, &Wagner, 2018). Following Zitzmann andHecht (2019),

we considered an ESS above 400 for all parameters as sufficient.

Table 1 displays proportions of replications with PSRF values below 1.10 as well as

ESSs above 400 across all conditions. Convergence rates as indicated byPSRF values below

1.10 were at least 90% under all conditions with K = 20 items. Under conditions with

K = 10 and smaller sample sizes (N ≤ 500), however, convergence was challenged, with

the lowest convergence rate being .82.
In some cells of the simulation design with N ≤ 500, proportions of replications with

ESSs for all parameters higher than 400 were somewhat lower than convergence rates as

evaluated on the basis of PSRF values. This indicates that although the chains converged

and mixed well, the parameter space was explored rather slowly and more iterations

might be needed to ensure good approximation of the posteriormean (Zitzmann&Hecht,

2019). Further assessments of convergence behaviour of replications with PSRF values

above 1.10 showed very poor, if any, mixing of the MCMC chains, with PSRF values of up

to 573.45, indicating that engaged and disengaged behaviours were not separable. Since
the mean across chains that did not show anymixing is not meaningful and non-coverged

solutionswould not be interpreted in practice,we excluded replicationswith PSRF values

exceeding 1.10 from all subsequent analyses.

To evaluate bias and efficiency of parameter estimates, we assessed the median and

50% ranges of posterior means. Good parameter recovery was found under all conditions

with a sufficiently high number of examinees (N = 1,000) and items (K = 20). Under

conditionswith fewer items and examinees, engagement variance, engagement difficulty,

as well as regression parameters for predicting the probability of omitting rather than
guessing when being disengaged were sensitive to bias when little information on

examinee disengagement was available. All remaining parameters could be recovered

without systematic bias across all conditions of the simulation design. Results for these are

given in the Supporting Information. As was to be expected, efficiency in parameter

estimates as indicated by narrower 50% ranges increased with an increasing number of

A latent response model for examinee engagement 11



both examinees and items for all parameter types. In addition, parameters associatedwith

disengagement were estimated more efficiently under conditions with higher omission

rates, that is, under conditions with a higher portion of disengaged behaviour being

directly observable.
Results for person parameter variances and correlations are given in Figure 2.

Engagement variance var(/) estimates were upwardly biased under conditions with

sparse information on examinee disengagement, such that under rather challenging

conditions with only 250 examinees, 10 items, and a low disengagement rate of 5% out of

Table 1. Proportions of replications with PSRF values < 1.10 and ESS > 400 for all parameters after

10,000 iterations

N K Disengaged (%) Omitted (%) PSRF < 1.10 ESS > 400

250 10 5 10 1.00 .94

50 .84 .74

90 .96 .96

10 10 .92 .82

50 .86 .84

90 .92 .92

20 5 10 .96 .96

50 1.00 1.00

90 .96 .96

10 10 1.00 1.00

50 .98 .98

90 1.00 1.00

500 10 5 10 .92 .88

50 .98 .94

90 .94 .94

10 10 .96 .96

50 .98 .98

90 .82 .82

20 5 10 1.00 1.00

50 .98 .98

90 .94 .94

10 10 1.00 1.00

50 .98 .98

90 .94 .92

1,000 10 5 10 1.00 1.00

50 .96 .96

90 .88 .86

10 10 .98 .98

50 .98 .98

90 .92 .92

20 5 10 .98 .98

50 1.00 1.00

90 1.00 1.00

10 10 .98 .98

50 .98 .98

90 .98 .98

Note. Omissions give the percentage of item omissions on disengaged behaviour.

N = number of examinees; K = number of items.
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which only 10% went back to item omissions, median var(/) estimates of 4.09 were

observed, as compared to the data-generating value of 3.50. However, bias decreased

rapidlywith an increasing number of examinees aswell as higher omission rates, such that

under conditions with N ≥ 500, medians of posterior means were extremely close to the

true value.

Likewise, under conditions with smaller data sets, engagement difficulties i were
sensitive to bias for items with low rates of disengaged behaviour, that is, when the

true parameter was small (see Figure 3). This effect was further intensified when

disengaged behaviour was not directly observable and consisted predominantly of

random guesses. Accordingly, parameter estimates for the smallest data-generating

value assessed in the simulation study of �4.50 (corresponding to an item-level

disengagement rate of only 1%) were most sensitive to bias under conditions with only

10% of disengaged behaviour resulting in item omissions, such that under the

condition with only N = 250 examinees and K = 10 items, a median of parameter
estimates of �4.74 was observed. Bias decreased rapidly with an increasing number of

examinees as well as higher percentages of omissions on disengaged behaviour. Under

conditions with N = 1,000 examinees, differences were extremely close to zero for all

values of i considered.
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Figure 2. Medians and 50% ranges of person parameter variance and correlation estimates. The

dashed horizontal line indicates the respective true parameter. Note that y-axes differ in scale. / ¼
engagement; h = ability; s = speed;N = number of examinees;K = number of items. The shades of

the lines denote the rates of disengaged behaviour. The percentages of omissions on disengaged

behaviour are given by different line types.
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Regression parameters were challenging to estimate under conditions with less

than K = 20 items (see Figure 4). Under such conditions, highly negative as well as

highly positive intercepts c0, resulting in disengaged behaviour consisting mainly of

rapid guesses and omissions, respectively, were biased with median parameter
estimates ranging from �2.95 to �3.47 and from 3.16 to 3.76, as compared to the

true values of �3 and 3, respectively. In addition, slopes for the regression of

omission probability on speed, cs, were underestimated under conditions with

K = 10.
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Figure 3. Medians and 50% ranges of differences between estimated and true engagement

difficulties i plotted against the true parameters. The dashed horizontal line indicates a difference of

zero. N = number of examinees; K = number of items. The shades of the lines denote the rates of

disengaged behaviour. Different percentages of omissions on disengaged behaviour are given by

different line types.
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6. Illustrating the model

To illustrate how the SA+E model differs conceptually from current approaches for
identifying examinee disengagement as well as for handling item omissions, we took data

from single replications of the simulation study for conditions with a disengagement rate

of 10% out ofwhich 50%went back to itemomissions, and compared parameter estimates

for the SA+E model with those obtained frommodels that either model the occurrence of

item omissions but assume all observed responses to stem from engaged response

processes, or filter disengaged behaviour but assume engagement to be unrelated to

ability and item omissions to be ignorable. We chose to compare the SA+E model to the

speed-accuracy + omission (SA+O) model (Ulitzsch et al., 2019) and the mixture model
for identifying examinee engagement presented by Wang and Xu (2015), representing

two recent modelling approaches for omissions and the identification of disengaged

guessing behaviour, respectively. Adopting the graphical notation of the SA+E frame-

work, the models are depicted in Figures 5 and 6, respectively.

The SA+Omodelmodels the omission process according to equation (2). All responses

are assumed to stem from engaged response processes and thus modelled with a Rasch

model as in equation (1). Different data-generating processes are assumed for RTs

associated with responses and omission, respectively. RTs associated with responses are
modelled as a function of speed and time intensity, as in equation (3). RTs associated with
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Figure 4. Medians and 50% ranges of regression parameters. The dashed horizontal line indicates

the respective true parameter. Note that y-axes differ in scale. c0 = intercept; ch = slope for

regression of omission probability on ability; cs = slope for regression of omission probability on

speed;N = number of examinees;K = number of items. The shades of the lines denote the rates of

disengaged behaviour. Different percentages of omissions on disengaged behaviour are given by

different line types. Note that differences in omission rates were induced by different values for c0.
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item omission are modelled analogously, but with a different set of item and person

parameters (omission time intensity and omission speed) thereby allowing for examinees

to operate at different speed levels when generating responses and omitting. The SA+O
model assumes a joint distribution for ability, speed, omission propensity, and omission

speed.

The Wang and Xu model is a mixture modelling approach for examinee disengage-

ment in terms of guessing. The model assumes a person-specific disengagement

probability that is constant across items and distinct from ability, that is,

pðDij ¼ 1Þ ¼ pi, with pi denoting examinee i’s engagement probability. For responses

and RTs, the model assumes models for engaged and disengaged examinees that are

equivalent to those assumed in the SA+E framework. When specifying the Wang and Xu
model, item omissions were ignored. The Wang and Xu model differs from the SA+E
model in the treatment of item omissions as well as in that it assumes engagement

probability to be unrelated to ability and constant across items.3 All models were

estimated employing the same set-up for model estimation as in the simulation study.

Figure 5. SA+O model by Ulitzsch et al. (2019).

Figure 6. Mixture model for identifying examinee engagement by Wang and Xu (2015).

3 For studies on assessing these issues separately, see Pokropek (2016), Pohl et al. (2014), and Wang and Xu
(2015).
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To investigate the effects of different test lengths and sample sizes, we varied the

number of items (10, 20) and examinees (250, 500, 1,000).

Differences in ability estimates between the SA+Omodel and the SA+Emodel (given in

Figure 7 as a function of engagement estimated using the SA+E framework as well as the
number of item omissions) are close to zero for examinees with high engagement, that is,

for examinees who rarely guess or omit items. With increasing disengagement, however,

there are increasing differences in ability estimates between the SA+O and SA+E models.

This goes back to assuming all responses to be engaged as well as misspecifying

engagement (or omission propensity) by neglecting the fact that disengaged examinees

tend not only to omit but also to guess. This is also reflected in the differences in item

difficulties (given in Figure 8 as a function of engagement difficulty). Due to assuming all

responses to be engaged, difficulties of easy items tend to be overestimated. This effect is
especially pronounced for items with higher engagement difficulties, as these tend to be

guessed on more often.

N = 1000, K = 10 N = 1000, K = 20

N = 500, K = 10 N = 500, K = 20

N = 250, K = 10 N = 250, K = 20

−4 −2 0 2 −4 −2 0 2

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

φ̂SA+E Model

θ̂ S
A

+O
M

od
e l

−
θ̂ S

A
+E

M
od

e l

0 omissions 17 omissions

Figure 7. Differences in ability estimates retrieved from the SA+O model and the SA+E model

plotted against engagement estimates retrieved from the SA+E model. The colour of the points

denotes the number of item omissions for each examinee, with darker shades indicating a higher

number of item omissions. N = number of examinees; K = number of items.
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The Wang and Xu model, too, gives ability estimates for examinees with higher

engagement that are very close to those obtained from the SA+E model (see Figure 9).
However, due to neglecting the fact that ability and engagement are positively related,

ability for examineeswith lower engagement is overestimated by theWang andXumodel.

This also results in systematically lower item difficulties (see Figure 10), with differences

being higher for easy items. Since in the data-generatingmodel ability and engagement are

positively correlated, observed engaged responses aremore likely to be observed formore

able examinees, resulting in difficulties being underestimated (Rose, 2013).

For both model comparisons, differences in ability and item difficulty estimates are

similar for different numbers of examinees and items.
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Figure 8. Differences in item difficulty estimates retrieved from the SA+O model and the SA+E

model plotted against item difficulty estimates retrieved from the SA+E model. The colour of the

pointsdenotes the itemsengagementdifficulty estimates retrieved fromtheSA+Emodel,withdarker

shades indicating higher engagement difficulty. N = number of examinees; K = number of items.
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7. Empirical example

To illustrate the use of the SA+E model for detecting and understanding disengagement,

we employed data from PISA 2015.We focused onmathematical literacy block number 1,

comprising K = 12 items, out of which three had an OR format and nine were MC. For

reasons of simplicity, we dichotomized partial credit items, scoring partially correct as
incorrect. We applied the model to several samples of students from different countries,

all of which led to comparable conclusions. Exemplarily, results for the Austrian subset,

containing N = 844 examinees, are reported. The data set under consideration had an

omission rate of 10.40%. Item-level omission rates ranged from 0.04% for the MC item

administered at position 1 to 34.60% for the OR item administered at position 5. An

additional 0.48% of responsesweremissing due to not-reached items. Thesewere ignored

in the estimation.
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Figure 9. Differences in ability estimates retrieved from the Wang and Xu model and the SA+E

model plotted against engagement estimates retrieved from the SA+E model. The colour of the

points denotes the number of item omissions for each examinee, with darker shades indicating a

higher number of item omissions. N = number of examinees; K = number of items.
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7.1. Estimation and model checking

For estimation, the same set-up as in the simulation study was employed. To take into

account that the item block contained different item types, we specified item-type-

specific probabilities correct when answering perfunctorily (cO) or guessing (cM) on OR

and MC items, respectively. In addition, we allowed for item-type-specific regression

intercepts cO0 and cM0 determining the probability of omitting instead of perfunctorily

answering or guessing on an item with an OR or MC format, respectively.

After 10,000 iterations per chain, the highest PSRF value and lowest ESS were 1.002
and 3,471.55, respectively. Model fit was evaluated employing posterior predictive

checks (Gelman&Hill, 2007). For these, we simulated 30 data sets by drawing parameters

from the posterior distribution and visually compared observed and simulated propor-

tions correct and omitted as well as distributions of observed and simulated RTs. RT
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Figure 10. Differences in item difficulty estimates retrieved from the Wang and Xu model and the

SA+Emodelplottedagainst itemdifficultyestimates retrieved fromtheSA+Emodel.Thecolourof the

pointsdenotes the itemsengagementdifficulty estimates retrieved fromtheSA+Emodel,withdarker

shades indicating higher engagement difficulty. N = number of examinees; K = number of items.
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distributions were predicted well by the model. Although overall proportions correct

were predictedwell by themodel, for some items, comparisons of observed andpredicted

probabilities correct indicate that a more complex measurement model, such as a two-

parameter logistic model, might fit the data better. Likewise, for some items, the model
underpredicted item omissions for examineeswith higher proportions of item omissions.

Possible model extensions with less restrictive assumptions concerning measurement

models for responses, RTs, and latent response indicators are addressed in the discussion

in Section 8. Plots for posterior predictive checks are given in the Supporting Information.

7.2. Results

Probabilities correct for disengaged guesses onMC items and perfunctory answers on OR
items indicate that while examinees correctly guessed with a probability of .23 [.19, .28]

onMC items, itwas highly unlikely (.11 [.08, .15]) to answer correctly on anOR itemwhen

answering only perfunctorily. Examinees tended to spend on average exp(bD) = exp

(3.54) = 34.53 s on an item when approaching it in a disengaged manner. At the same

time, there was considerable variation in logarithmized RTs associated with disengaged

behaviour, with r2
D ¼ 1:40 [1.31, 1.49]. Means of the posterior distribution of person

parameter variances and correlations, together with 95% highest density intervals, are

displayed in Table 2. More able examinees tended to be more engaged. Furthermore,
engaged aswell asmore able examinees tended towork at a slower pacewhen generating

engaged responses. The intercepts of the logistic regression predicting the probability of

omitting rather than randomly guessing or answering perfunctorily indicate that

examinees with average ability and speed were more likely to guess and less likely to

perfunctorily answer than to omit (cM0 = �0.71 [�0.94,�0.47], cO0 = 0.45 [0.26, 0.67]).

The slopes indicate that examineeswith higher ability andhigher speed tended to guess or

perfunctorily answer rather than to omit when disengaged (ch = �0.74 [�0.98, �0.52];

cs = �4.79 [�6.04, �3.70]). Item parameters and 95% highest density intervals are
depicted in Figure 11. Item numbers for OR items are given in bold type. Examinees were

more likely to disengage on more difficult items (corði; bÞ ¼ :68) as well as on items with

higher time intensity offsets (corði; b�Þ ¼ :81). Time intensity offsets b* indicate that

examinees tended, on average, to require exp(0.24) = 1.27 to exp(1.73) = 5.65 times

longer to generate engaged responses to these items than they tended to interact with

items in a disengagedmanner. Engagement difficulty parameters ranged from�6.55 (item

1) to 0.60 (item 5). For these, respectively 0.05% and 59.22% of item-by-examinee

interactions were classified as disengaged. Note that for item 5, the model-implied
disengagement rate was notably higher than the item-level omission rate of 34.60%. The

difference between the expected engagement rate and the observed omission rate can be

attributed to guessing (or perfunctory answers), illustrating that examinees both omitted

Table 2. Person parameter variances and correlations

/ h s

/ 3.25 [2.65, 3.93]

h .59 [.50, .68] 1.47 [1.23, 1.74]

s �.35 [�.44, �.25] �.36 [�.45, �.26] 0.04 [0.03, 0.05]

Note. Highest density intervals are given in square brackets.

/ = engagement; h = ability; s = speed.
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and answered perfunctorily when disengaged. This is also illustrated in an overall

expected disengagement rate of 18.23% as compared to the omission rate of 10.40%.

8. Discussion

The SA+Emodel presented in this paper brings together research onmodelling examinee

engagement and research onmissing values and provides a framework for identifying and

modelling examinee disengagement in terms of both random guesses and perfunctory

answers as well as in terms of omissions. By employing a latent response approach with

engagement probabilities modelled as a function of person and item parameters, the

model allows for classifying disengaged behaviour at the item-by-examinee level as well as

for assessment of item and examinee characteristics associated with such behaviour. In

addition, the model allows for differences in disengaged test-taking behaviour across
examinees by regressing the probability of omitting rather than randomly guessing or

answering perfunctorily on ability and speed.

The SA+E framework complements and refines recent approaches for examinee

disengagement as well as non-ignorable item omissions. Compared to RT-based scoring

methods separating engaged and disengaged responses and/or itemomissions by defining

RT thresholds (Frey et al., 2018; Lee & Jia, 2014; Wise & DeMars, 2006), the SA+E
framework comes with less strict assumptions concerning RT distributions associated

with engaged and disengaged behaviour since these are allowed to overlap. Compared to
previous model-based approaches for identifying disengaged examinee behaviour

(Meyer, 2010; Pokropek, 2016; Schnipke & Scrams, 1997; Wang & Xu, 2015), the model

allows disengaged behaviour to vary across both items and examinees while considering

engagement when estimating ability.
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Figure 11. Posteriormeans and highest density intervals for engagement difficulties i, difficulties b,
and time intensity offsets b*. Items in bold have an open -response format.
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In this regard, the model also adds to a broader class of models that employ

mixture modelling to identify differences in examinee behaviour. Few model-based

approaches for detecting differences in examinee behaviour allow for differences at

the item-by-examinee level (Erosheva, 2002; Molenaar & de Boeck, 2018; Pokropek,
2016). These do, however, not allow these differences to be related to different levels

of ability. In this context, the proposed framework can be adapted to suit other

applications and further model developments seeking to identify behavioural

differences at the item-by-examinee level while modelling the underlying processes

jointly with ability.

We illustrated the model’s advantages by showing that ability estimates and item

difficulties can be biased when neglecting the fact that examinees tend to omit and guess

when disengaged, that engagement is related to ability, and that engagement probabilities
tend to vary across items. Our findings corroborate findings from previous studies on

ignoring guessing behaviour and item omissions as well as on neglecting the relationship

between engagement and ability (Pohl et al., 2014; Pokropek, 2016; Rios et al., 2017; Rose

et al., 2010; Wang & Xu, 2015).

The model yields unbiased and efficient parameter estimates under conditions with

at least N = 500 examinees and K = 20 items even under disengagement rates of as

low as 5% and unbalanced proportions of item omissions and guesses for disengaged

behaviour. Under conditions with fewer items or examinees, low disengagement rates
pose a threat to obtaining unbiased and efficient parameter estimates. We therefore

recommend applying the model to smaller data sets with N < 500 or K < 20 only when

omission rates are high, that is, at least 5%. Due to the model’s complexity,

convergence might be more challenging to achieve under conditions with few items

and examinees.

When no convergence can be reached it is likely that disengaged behaviour

predominantly consists of item omissions (e.g., for tests with complex item formats

where observed responses are unlikely to go back to guesses or perfunctory answers)
and model-based approaches for modelling omission processes (Holman & Glas, 2005;

Ulitzsch et al., 2019) pose a less complex alternative to the SA+E model. When seeing

item omissions as indicators of disengaged behaviour, omission propensity in model-

based approaches for item omissions is equivalent to the engagement variable, with

examinee disengagement manifesting itself only in item omissions, while all observed

responses are assumed to stem from engaged response processes. Under such

assumptions, examinee engagement would be fully observable, with engagement

indicators Dij corresponding to the negation of omission indicators 1 � dij (see the
Supporting Information). Likewise, when no omissions occurred, the model can easily

be simplified to assuming disengaged behaviour to a result in guessing only while still

jointly modelling engagement, ability, and speed (see the Supporting Information).

In the empirical example we found examinee engagement and ability to be related. At

the same time, the only moderate correlation between engagement and ability provides

supporting evidence that engagement and ability represent different constructs. In

addition, we found engagement to vary largely across items and examinees. Items that

were more complex in terms of difficulty and time intensity were found to evoke
disengagement more easily. This is in line with findings from previous studies employing

threshold methods for identifying examinee disengagement (Lee & Jia, 2014; Wise et al.,

2009). In addition, we illustrated that both item omissions and guessing are prevalent in

LSA data and thus both need to be considered.
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8.1. Limitations and future directions

In the SA+Emodel, identifying examinee disengagement is facilitated by assuming that all

item omissions stem from examinee disengagement while allowing for observed

responses to stem from either solution or guessing behaviour. Thus, similarly to previous
model-based approaches for item omissions (Holman & Glas, 2005; Ulitzsch et al., 2019),

the SA+E model assumes that all item omissions stem from the same data-generating

process. The model does not allow for engaged item omissions, whichmight occur when

examinees omit items after seriously reading and considering the item. Such mechanisms

have been discussed to beplausible (Becker&Pohl, 2016;Mislevy&Wu, 1996; Robitzsch,

2014). Extending the model to allow for different omission mechanisms is therefore a

pertinent topic for future research.

Furthermore, examinees might not work with a constant level of engagement
throughout the test. While some examinees might be disengaged throughout the whole

test, it is easy to imagine that others might be engaged at the beginning of the assessment

but becomemore disengaged towards the end. Non-stationarity of person variables can in

principle be incorporated by adding additional linear or nonlinear terms (see Fox &

Marianti, 2016, for an extension of the speed-accuracymodel that allows for varying speed

across the test).

Although the SA+E model allows for the occurrence of item omissions to vary across

examinees when these approach an item in a disengaged manner, it is still rather
restrictive in that it assumes the probability of omitting rather than guessing to be a

function of ability and speed. A variety of other examinee- or item-specific factors such as

demographic variables or item featuresmight determine disengaged test-taking strategies.

Considering these therefore constitutes a promising extension of the SA+E model.

The proposed model assumes examinee disengagement to result in random guesses,

perfunctory answers, and item omissions. Examinee disengagement can, however,

manifest itself in a variety of test-taking behaviours different from those considered in the

proposedmodel. Examinees could, for instance, still employ solution strategies on an item
but just try less hard (Debeer & Janssen, 2013) or still use their ability to some extent for

differentiating among responses while guessing (San Mart�ın, del Pino, & de Boeck, 2006).

In itsmost extreme form examinee disengagementmight result in quitting the assessment

altogether. In fact, examinees who spend only a short time on a test without reaching the

time limit or the endof the test aremore likely to guess on the items they attempted (Cao&

Stokes, 2008). A model for not-reached items due to quitting has been proposed by

Ulitzsch, von Davier, and Pohl (in press). Integrating research on modelling quitting

behaviour with research on examinee disengagement would enrich research on
examinee disengagement as well as provide further insights into examinee test-taking

behaviour.

Assessing the joint distribution of person variables yields valuable insights into examinee

behaviour. In addition, relating engagement to, for example, demographic variables or

personality can provide additional insight into possible reasons for examinee disengagement

or for identifying groups of persons with a high prevalence of disengagement. For instance,

omission propensity has been shown to be relatively stable across different domains and to

be related to demographic variables such as gender (K€ohler et al., 2015a). Similar effects
could be expected for examinee engagement. Furthermore, relating examinee engagement

to self-reported test-taking motivation, as for example administered in PISA (OECD, 2017),

could be used to validate the assumptions made in the proposed model.

The model was presented employing a Rasch model for item responses as well as

its RT equivalent, with time discrimination parameters fixed to be the same across
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all items. Although Rasch modelling is in accordance with the analysis frameworks

of major LSAs (OECD, 2017; Pohl & Carstensen, 2012), such assumptions might not

always hold for the data at hand. In fact, in the empirical example, posterior

predictive analyses revealed that less restrictive measurement models for responses
might indeed fit the data better. Implementing these into the model, however, is not

trivial since it can be challenging to distinguish engaged and disengaged responses

on items with low item discrimination. Such model extensions therefore remain a

task for future research.

Similarly, in future research, the model could be extended to include more complex

measurement models for latent response indicators. For these, the SA+Emodel assumes a

unidimensional Rasch model. This assumption is likely to be violated when examinees

differ in the level of engagement with which they approach different types of items.
Previous research suggests that this might indeed be the case. Omission behaviour, for

instance, has often been found to differ for itemswith a simpleMC format and itemswith a

more complex response format (K€ohler et al., 2015b; Koretz, 1993). Likewise, in the

empirical example, for some items, the model underpredicted item omissions for

examinees with a higher number of omissions. In this context, specifying a multidimen-

sional measurement model for latent response indicators might model disengaged test-

taking behaviour more adequately.

In addition, Molenaar, Bolsinova, and Vermunt (2018) have shown that violations of
the lognormal assumptions for RTs may jeopardize correct classifications in mixture IRT

models employing RTs for identifying differences in examinee behaviour. As a solution,

Molenaar et al. (2018) suggested a semi-parametric approach based on categorizing RTs

that can easily be integrated with the SA+E framework.

In the current paper, Bayesian techniques were employed for model estimation.

Although this yielded good parameter recovery with sample sizes of as low as N = 500,

estimation was rather time-intense: under the conditions with the largest data sets

(N = 1,000, K = 20), estimation took approximately 24 hr. Research questions in
educational research often concern multiple groups, constructs, or points in time, and

involve larger data sets. Bayesian estimation might thus not always be feasible. With

technical and algorithmic advances, we expect this to be resolved. Until then, future

research may also consider the feasibility of maximum likelihood estimation for the

proposed model. Here the challenge will be to obtain convergence and valid solutions

when the prevalence of item omissions and guessing is low on some items.
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