4,874 research outputs found

    An AC susceptometer for the characterization of large, bulk superconducting samples

    Full text link
    The main purpose of this work was to design, develop and construct a simple, low-cost AC susceptometer to measure large, bulk superconducting samples (up to 32 mm in diameter) in the temperature range 78-120 K. The design incorporates a double heating system that enables a high heating rate (25 K/hour) while maintaining a small temperature gradient (< 0.2 K) across the sample. The apparatus can be calibrated precisely using a copper coil connected in series with the primary coil. The system has been used successfully to measure the temperature dependence of the AC magnetic properties of entire RE-Ba-Cu-O [(RE)BCO] bulk superconducting domains. A typical AC susceptibility measurement run from 78 K to 95 K takes about 2 hours, with excellent temperature resolution (temperature step ~ 4 mK) around the critical temperature, in particular.Comment: 25 pages, 7 figures. Accepted for publication in Measurement Science and Technolog

    RIDME distance measurements using Gd(iii) tags with a narrow central transition

    Get PDF
    Methods based on pulse electron paramagnetic resonance allow measurement of the electron-electron dipolar coupling between two spin labels. Here we compare the most popular technique, Double Electron-Electron Resonance (DEER or PELDOR), with the dead-time free 5-pulse Relaxation-Induced Dipolar Modulation Enhancement (RIDME) method for Gd(iii)-Gd(iii) distance measurements at W-band (94.9 GHz, ≈3.5 T) using Gd(iii) tags with a small zero field splitting (ZFS). Such tags are important because of their high EPR sensitivity arising from their narrow central transition. Two systems were investigated: (i) a rigid model compound with an inter-spin distance of 2.35 nm, and (ii) two mutants of a homodimeric protein, both labeled with a DOTA-based Gd(iii) chelate and characterized by an inter-spin distance of around 6 nm, one having a narrow distance distribution and the other a broad distribution. Measurements on the model compound show that RIDME is less sensitive to the complications arising from the failure of the weak coupling approximation which affect DEER measurements on systems characterized by short inter-spin distances between Gd(iii) tags having a narrow central transition. Measurements on the protein samples, which are characterized by a long inter-spin distance, emphasize the complications due to the appearance of harmonics of the dipolar interaction frequency in the RIDME traces for S > 1/2 spin systems, as well as enhanced uncertainties in the background subtraction. In both cases the sensitivity of RIDME was found to be significantly better than DEER. The effects of the experimental parameters on the RIDME trace are discussed.This research was supported by the Israeli Science Foundation (grant 334/14) and was made possible in part by the historic generosity of the Harold Perlman Family (D. G.). We also acknowledge the Australian Research Council for a Discovery grant to G. O. and B. G. (DP150100383) and a Future Fellowship to B. G. (FT130100838). D. G. holds the Erich Klieger professorial chair in Chemical Physics

    Observation of noise phase locking in a single-frequency VECSEL

    Full text link
    We present an experimental observation of phase locking effects in the intensity noise spectrum of a semiconductor laser. These noise correlations are created in the medium by coherent carrier-population oscillations induced by the beatnote between the lasing and non-lasing modes of the laser. This phase locking leads to a modification of the intensity noise profile at around the cavity free-spectral-range value. The noise correlations are evidenced by varying the relative phase shift between the laser mode and the non-lasing adjacent side modes

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Multipurpose High Frequency Electron Spin Resonance Spectrometer for Condensed Matter Research

    Full text link
    We describe a quasi-optical multifrequency ESR spectrometer operating in the 75-225 GHz range and optimized at 210 GHz for general use in condensed matter physics, chemistry and biology. The quasi-optical bridge detects the change of mm wave polarization at the ESR. A controllable reference arm maintains a mm wave bias at the detector. The attained sensitivity of 2x10^10 spin/G/(Hz)1/2, measured on a dilute Mn:MgO sample in a non-resonant probe head at 222.4 GHz and 300 K, is comparable to commercial high sensitive X band spectrometers. The spectrometer has a Fabry-Perot resonator based probe head to measure aqueous solutions, and a probe head to measure magnetic field angular dependence of single crystals. The spectrometer is robust and easy to use and may be operated by undergraduate students. Its performance is demonstrated by examples from various fields of condensed matter physics.Comment: submitted to Journal of Magnetic Resonanc

    Implementation of chamber misalignments and deformations in the ATLAS muon spectrometer simulation

    Full text link
    "The implementation of run-time dependent corrections for alignment and distortions in the detector description of the ATLAS Muon Spectrometer is discussed, along with the strategies for studying such effects in dedicated simulations."http://deepblue.lib.umich.edu/bitstream/2027.42/64214/1/jpconf8_119_032010.pd

    Toward a global description of the nucleus-nucleus interaction

    Get PDF
    Extensive systematization of theoretical and experimental nuclear densities and of optical potential strengths exctracted from heavy-ion elastic scattering data analyses at low and intermediate energies are presented.The energy-dependence of the nuclear potential is accounted for within a model based on the nonlocal nature of the interaction.The systematics indicate that the heavy-ion nuclear potential can be described in a simple global way through a double-folding shape,which basically depends only on the density of nucleons of the partners in the collision.The poissibility of extracting information about the nucleon-nucleon interaction from the heavy-ion potential is investigated.Comment: 12 pages,12 figure
    corecore