696 research outputs found

    The relation between stature and long bone length in the Roman Empire

    Get PDF

    A 1° x 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890-1990

    Get PDF
    An anthropogenic emissions data set has been constructed for CO2, CO, CH4, nonmethane volatile organic compounds, SO2, NOx, N2O, and NH3 spanning the period 1890–1990. The inventory is based on version 2.0 of the Emission Database for Global Atmospheric Research (EDGAR 2.0). In EDGAR the emissions are calculated per country and economic sector using an emission factor approach. Calculations of the emissions with 10 year intervals are based on historical activity statistics and selected emission factors. Historical activity data were derived from the Hundred Year Database for Integrated Environmental Assessments (1890–1990) supplemented with other data and our own estimates. Emission factors account for changes in economical and technological developments in the past. The calculated emissions on a country basis have been interpolated onto a 1°x1° grid. This consistent data set can be used in trend studies of tropospheric trace gases and in environmental assessments, for example, the analysis of historical contributions of regions and countries to environmental forcing like the enhanced greenhouse gas effect, acidification, and eutrofication. The database focuses on energy/industrial and agricultural/waste sources; for completeness, historical biomass-burning estimates where added using a simple and transparent approach. ? 2001 American Geophysical Unio

    Mapping ecosystem functions and services in Eastern Europe using global-scale data sets

    Get PDF
    To assess future interactions between the environment and human well-being, spatially explicit ecosystem service models are needed. Currently available models mainly focus on provisioning services and do not distinguish changes in the functioning of the ecosystem (Ecosystem Functions – ESFs) and human use of such functions (Ecosystem Services – ESSs). This limits the insight on the impact of global change on human well-being. We present a set of models for assessing ESFs and ESSs. We mapped a diverse set of provisioning, regulating and cultural services, focusing on services that depend on the landscape structure. Services were mapped using global-scale data sets. We evaluated the models for a sample area comprising Eastern Europe. ESFs are mainly available in natural areas, while hotspots of ESS supply are found in areas with heterogeneous land cover. Here, natural land cover where ESFs are available is mixed with areas where the ESSs are utilized. We conclude that spatial patterns of several ESFs and ESSs can be mapped at global scale using existing global-scale data sets. As land-cover change has different impacts on different aspects of the interaction between humans and the environment, it is essential to clearly distinguish between ESFs and ESSs in integrated assessment studies

    Habitat conversion and global avian biodiversity loss

    Get PDF
    The magnitude of the impacts of human activities on global biodiversity has been documented at several organizational levels. However, although there have been numerous studies of the effects of local-scale changes in land use (e.g. logging) on the abundance of groups of organisms, broader continental or global-scale analyses addressing the same basic issues remain largely wanting. None the less, changing patterns of land use, associated with the appropriation of increasing proportions of net primary productivity by the human population, seem likely not simply to have reduced the diversity of life, but also to have reduced the carrying capacity of the environment in terms of the numbers of other organisms that it can sustain. Here, we estimate the size of the existing global breeding bird population, and then make a first approximation as to how much this has been modified as a consequence of land-use changes wrought by human activities. Summing numbers across different land-use classes gives a best current estimate of a global population of less than 100 billion breeding bird individuals. Applying the same methodology to estimates of original land-use distributions suggests that conservatively this may represent a loss of between a fifth and a quarter of pre-agricultural bird numbers. This loss is shared across a range of temperate and tropical land-use types

    Health and wealth in the Roman Empire

    Get PDF
    Ancient Rome was the largest and most populous empire of its time, and the largest pre-industrial state in European history. Recent though not universally accepted research suggests that at least for the most populous central periods of its history standard of living was also rather higher than before or after. To trace whether this is also reflected in Roman biological standard of living, we present the first large and more or less comprehensive dataset, based on skeletal data for some 10,000 individuals, covering all periods of Roman history, and all regions (even if inevitably unequally). We discuss both the methodologies that we developed and the historical results. Instead of reconstructing heights from the long bones assuming fixed body proportions or from one individual long bone, we apply exploratory factor analysis and calculate factor scores for 50-year periods. Our measure of the biological standard of living declined during the last two centuries B.C. and started to improve again, slowly at first, from the second century A.D. It correlated negatively with population, but also with other aspects of standard of living such as wages or diets

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    Research priorities in land use and land-cover change for the Earth System and Integrated Assessment Modelling

    Get PDF
    This special issue has highlighted recent and innovative methods and results that integrate observations and modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-economic systems, respectively. To date, cooperation between these communities has been limited. Based on common interests, this work discusses research priorities in representing land use and land-cover change for improved collaboration across modelling, observing and measurement communities. Major research topics in land use and land-cover change are those that help us better understand (1) the interaction of land use and land cover with the climate system (e.g. carbon cycle feedbacks), (2) the provision of goods and ecosystem services by terrestrial (natural and anthropogenic) land-cover types (e.g. food production), (3) land use and management decisions and (4) opportunities and limitations for managing climate change (for both mitigation and adaptation strategies

    Little impact of Three Gorges Dam on recent decadal lake decline across China's Yangtze Plain

    Get PDF
    The ubiquitous lakes across China's Yangtze Plain (YP) are indispensable freshwater resources sustaining ecosystems and socioeconomics for nearly half a billion people. Our recent survey revealed a widespread net decline in the total YP lake inundation area during 2000–2011 (a cumulative decrease of ∼10%), yet its mechanism remains contentious. Here, we uncover the impacts of climate variability and anthropogenic activities including i) Yangtze flow and sediment alterations by the Three Gorges Dam (TGD) and ii) human water consumption in agricultural, industrial, and domestic sectors throughout the downstream Yangtze Basin. Results suggest that climate variability is the dominant driver of this decadal lake decline, whereas studied human activities, despite varying seasonal impacts that peak in fall, contribute marginal fraction (∼10–20% or less) to the interannual lake area decrease. Given that the TGD impacts on the total YP lake area and its seasonal variation are both under ∼5%, we also dismiss the speculation that the TGD might be responsible for evident downstream climate change by altering lake surface extent and thus open water evaporation. Nevertheless, anthropogenic impacts exhibited a strengthening trend during the past decade. Although the TGD has reached its full-capacity water regulation, the negative impacts of human water consumption and TGD-related net channel erosion are already comparable to that of TGD's flow regulation, and may continue to grow as crucial anthropogenic factors to future YP lake conservation
    corecore