35 research outputs found

    Patterns of recombination in HIV-1M are influenced by selection disfavouring the survival of recombinants with disrupted genomic RNA and protein structures

    Get PDF
    Genetic recombination is a major contributor to the ongoing diversification of HIV. It is clearly apparent that across the HIV-genome there are defined recombination hot and cold spots which tend to co-localise both with genomic secondary structures and with either inter-gene boundaries or intra-gene domain boundaries. There is also good evidence that most recombination breakpoints that are detectable within the genes of natural HIV recombinants are likely to be minimally disruptive of intra-protein amino acid contacts and that these breakpoints should therefore have little impact on protein folding. Here we further investigate the impact on patterns of genetic recombination in HIV of selection favouring the maintenance of functional RNA and protein structures. We confirm that chimaeric Gag p24, reverse transcriptase, integrase, gp120 and Nef proteins that are expressed by natural HIV-1 recombinants have significantly lower degrees of predicted folding disruption than randomly generated recombinants. Similarly, we use a novel single-stranded RNA folding disruption test to show that there is significant, albeit weak, evidence that natural HIV recombinants tend to have genomic secondary structures that more closely resemble parental structures than do randomly generated recombinants. These results are consistent with the hypothesis that natural selection has acted both in the short term to purge recombinants with disrupted RNA and protein folds, and in the longer term to modify the genome architecture of HIV to ensure that recombination prone sites correspond with those where recombination will be minimally deleterious

    Recombination in Eukaryotic Single Stranded DNA Viruses

    Get PDF
    Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution

    Awareness, Treatment and Control of Hypertension in Kenya

    Get PDF
    The emerging epidemic of hypertension (HTN) in sub-Saharan Africa is predicted to worsen. Uncontrolled HTN is associated with CVD, high morbidity and premature mortality; hence early detection, treatment and control of HTN is critical to reduction of the associated sequelae. The study was guided by the Social Ecological Model and principles of Community Based Participatory Research

    Global risk assessment of cardiovascular disease in resource constrained settings

    Get PDF
    Cardiovascular disease (CVD) is an emerging problem in Sub-Saharan Africa. Many current guidelines recommend using global risk assessment (GRA) to quantify the risk for developing CVD and to guide treatment and policy. Most GRA tools require lipid measures which are not readily available in resource-constrained settings. Of the 3 most published non-laboratory based tools: Gaziano and Framingham substitute BMI for cholesterol; WHO does not include BMI or cholesterol

    Functionally conserved architecture of hepatitis C virus RNA genomes

    Get PDF
    Plus-sense RNA viruses cause diverse pathologies in humans. Viral RNA genomes are selected to encode information both in their primary sequences and in their higher-order tertiary structures required to replicate and to evade host immune responses. We interrogated the physical structures of three evolutionarily divergent hepatitis C virus (HCV) RNA genomes using high-throughput chemical probing and found, along with all previously known RNA-structure–based regulatory elements, diverse previously uncharacterized structures that impact viral replication. We also characterized strategies by which the HCV genomic RNA structure masks detection by innate immune sensors. This structure-first strategy for comparative analysis of genome-wide RNA structure can be broadly applied to understand the contributions of higher-order genome structure to viral replication and pathogenicity

    Pigeon circoviruses display patterns of recombination, genomic secondary structure and selection similar to those of beak and feather disease viruses

    Get PDF
    Pigeon circovirus (PiCV) has a ~2 kb genome circular ssDNA genome. All but one of the known PiCV isolates have been found infecting pigeons in various parts of the world. In this study, we screened 324 swab and tissue samples from Polish pigeons and recovered 30 complete genomes, 16 of which came from birds displaying no obvious pathology. Together with 17 other publicly available PiCV complete genomes sampled throughout the Northern Hemisphere and Australia, we find that PiCV displays a similar degree of genetic diversity to that of the related psittacine-infecting circovirus species, beak and feather disease virus (BFDV). We show that, as is the case with its pathology and epidemiology, PiCV also displays patterns of recombination, genomic secondary structure and natural selection that are generally very similar to those of BFDV. It is likely that breeding facilities play a significant role in the emergence of new recombinant PiCV variants and given that ~50 % of the domestic pigeon population is infected subclinically, all pigeon breeding stocks should be screened routinely for this virus

    Evidence of pervasive biologically functional secondary structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    Get PDF
    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.Department of HE and Training approved lis
    corecore