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Hepatitis C virus (HCV) infects over 170 million people worldwide
and is a leading cause of liver disease and cancer. The virus has
a 9,650-nt, single-stranded, messenger-sense RNA genome that is
infectious as an independent entity. The RNA genome has evolved
in response to complex selection pressures, including the need to
maintain structures that facilitate replication and to avoid clear-
ance by cell-intrinsic immune processes. Here we used high-
throughput, single-nucleotide resolution information to generate
and functionally test data-driven structural models for three diverse
HCV RNA genomes. We identified, de novo, multiple regions of
conserved RNA structure, including all previously characterized cis-
acting regulatory elements and also multiple novel structures re-
quired for optimal viral fitness. Well-defined RNA structures in the
central regions of HCV genomes appear to facilitate persistent in-
fection by masking the genome from RNase L and double-stranded
RNA-induced innate immune sensors. This work shows how struc-
ture-first comparative analysis of entire genomes of a pathogenic
RNA virus enables comprehensive and concise identification of
regulatory elements and emphasizes the extensive interrelation-
ships among RNA genome structure, viral biology, and innate
immune responses.

RNA structure | evolution | motif discovery | functional validation

Hepatitis C virus (HCV) currently infects over 170 million
people. There is no vaccine, and therapy, generally involving
treatment with IFN and ribavirin, is often ineffective (1). Effi-
cacious anti-HCV therapeutics are becoming available (2), but
the extent to which they will mitigate the hepatitis C disease
burden remains to be seen. Roughly 70% of acutely infected
individuals fail to clear the virus and become lifelong HCV
carriers, at risk for progressive hepatic fibrosis, cirrhosis, and
hepatocellular carcinoma (3).

HCV genomes are single-stranded, ~9,650-nt, messenger-
sense RNA molecules (4). The naked RNA initiates autonomous
replication when transfected into cells and establishes chronic
HCYV infection in chimpanzees (5, 6). The HCV genomic RNA
carries genetic information at two levels: a single large ORF
encodes viral proteins and complex RNA structural elements
regulate the viral replication cycle (4). Viral replication begins
when conserved RNA elements in the 5' UTR bind the 40S ri-
bosome subunit and recruit essential translation factors (7).
Translation produces a viral polyprotein that is cleaved by cel-
lular and viral proteases to generate 10 viral proteins (4). The
HCV genome is replicated through a negative-strand RNA in-
termediate by a viral RNA-dependent RNA polymerase (NS5B)
in a process controlled by conserved RNA elements (8-17).

The HCV genomic RNA is physically compact (18) and highly
structured (19). These features likely facilitate persistent HCV
infections in humans by protecting the genome from degradation
by innate antiviral defenses (20, 21). Two elements of this de-
fense are RNase L, which cleaves in single-stranded regions (22),
and diverse double-stranded RNA-induced antiviral immune
responses (23). Selection of RNase L-resistant structures has
likely led to the stable and compact HCV genome structure (24);
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in contrast, concurrent selection imposed by the requirement to
evade double-stranded RNA-triggered innate immune sensors
likely constrains the lengths of internal helices. Defining struc-
tural conformations of HCV RNA genomes is thus a critical step
in understanding why human innate immune systems frequently
fail to recognize and clear the virus.

The structure of 80% of the HCV genome is unexplored. Most
existing structural data have been obtained using short RNA
transcripts that may not fully recapitulate structures in the intact
genome. Here we used selective 2’-hydroxyl acylation analyzed
by primer extension, read out by mutational profiling (SHAPE-
MaP) using massively parallel sequencing (25, 26), to model the
structures of infectious HCV RNA genomes from genotypes 1a,
1b, and 2a. We developed a concise structure-first approach,
based on SHAPE reactivity information, to identify structural
features conserved across HCV genotypes. We discovered con-
served structural elements that influence viral replication and
identified genotype-specific structures that likely facilitate eva-
sion of cellular innate immune responses.

Results

Interrogation of Three Divergent HCV RNA Genome Structures. We
examined genome-length synthetic RNA transcripts from three
molecular HCV clones H77¢, Conl, and JFH1. H77 and Conl
correspond to HCV genotypes la and 1b, respectively, share
80% sequence identity, and represent HCV strains accounting
for the majority of infections worldwide (27). JFHI1 represents
genotype 2a (27) and shares only 70% sequence identity with
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genotype 1 viruses. SHAPE-MaP data were obtained at read
depths that allow full recovery of the underlying structure
information. SHAPE reagents react with RNA nucleotides to
report local nucleotide flexibility (28) such that unconstrained
single-stranded regions are reactive and base-paired elements
are generally unreactive (29).

Regions known to have conserved structural features, such as
the internal ribosome entry site (IRES) (7) and the unstructured
region at the beginning of the ORF (30), had similar SHAPE
profiles in each genome (Fig. 14). Many regions had low SHAPE
reactivities in all three genomes (Fig. 1B, blue bars). These
structured regions included known regulatory elements, including
the IRES (7) and NS5B cis-regulatory element (CRE) (8, 9, 14,
31), and also many regions with uncharacterized functions. The
central regions of the individual genomes (encoding proteins E2
through NS4b) contained highly structured elements; however,
the majority of these structured elements did not occur in the
same regions in all three genomes (Fig. 1B, green regions in
heat maps).

Modeling HCV Genome Secondary Structures. We identified regions
within the HCV genomes most likely to form well-determined,
stable secondary structures based on analysis of Shannon entropy
and SHAPE reactivities (Fig. 1C). Shannon entropies are de-
rived from a SHAPE-directed partition function (32) and report
a measure of confidence in the predicted base-pairing pattern at
each nucleotide (26, 33). Low entropy also corresponds to high
confidence in structure modeling. Multiple regions with low
Shannon entropy were shared by all three genomes, and these
often overlapped in whole or in part with conserved regions of
low SHAPE reactivity (Fig. 1 B and C).
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Using SHAPE data as constraints (34), we generated experi-
mentally informed secondary structure models for each genome
(Fig. 1D and Figs. S1-S3). This approach has been validated for
RNAs of known structure (34) and for identification of novel
functional elements in large RNAs (26). The secondary structure
models are illustrated using arc plots, which capture both pre-
dicted base pairing and the degree of variability in the structural
models. Well-defined structures corresponding to highly proba-
ble helices are green. Alternative structures appear as over-
lapping blue, yellow, and gray arcs in the figures. In HCV
genome regions where functional RNA structures have been
previously characterized—for example, the IRES in the 5" UTR
(Fig. S4) and stem-loop elements within NS5B (15)—our genome-
wide structural models corresponded closely with previously vali-
dated secondary structures.

Conservation of Structured Elements Across HCV Genotypes. Using
the SHAPE-directed RNA structural models, we identified 15
regions of 75 nt or more in which at least 75% of modeled base
pairs occur at homologous positions in all three genomes (Fig. 24
and Table S1). We used two independent analyses to examine
evolutionary pressures on these 15 structurally conserved regions.
The presence of selection favoring the maintenance of base
pairing within functional RNA elements is expected to drive:
(¢) reduced synonymous nucleotide substitution frequencies in codons
and (if) complementary coevolution between base-paired sites.

Twelve of the structurally conserved regions fall in the coding
region. The relative synonymous substitution rates within these
regions were examined across seven HCV sequence alignments,
each including up to 100 sequences from clinical samples. Strong
selection pressures can generally be detected with datasets of this
size; however, currently available sequences are likely too few to
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to the global median. (B) Heat maps showing me-
dian SHAPE reactivities (51-nt windows) for each
of three genomes. Regions identified as mutually
structured across all three genomes are emphasized
with blue bars. (C) Median Shannon entropies (51-nt
windows) for each of three HCV genomes. Regions
with low Shannon entropies in all three genomes
are indicated above the histograms with gray bars.
(D) Representative structural model for the JFH1
RNA genome. Helices are shown as arcs, colored
according to base-pairing probabilities as calculated
from the SHAPE-directed partition function (26).
Regions with green arcs represent well-defined
structures; regions with overlapping blue, yellow,
R and gray arcs likely sample multiple conformations.
J “\ Full arc models for all three RNA genomes are pro-
vided in Figs. S1-S3.
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Fig. 2. Selective pressures on higher-order HCV RNA structures. (A) Loca-
tions of 15 regions that have conserved base pairing in the SHAPE-directed
models across all three HCV genotypes. Regions are numbered relative to
their position in the H77c genome. (B) Synonymous substitution rates for
each of seven individual genomic alignments over all regions of conserved
base pairing combined. Larger (negative) values indicate lower synonymous
substitution rates, consistent with evolutionary conservation of RNA struc-
ture. (C) Differences in synonymous substitution rates for individual regions.
The z-scores above 1.96 and below —1.96 (dashed lines) are significant at the
P < 0.05 level. The lower synonymous substitution rates in regions 316 and
603 may reflect evolutionary constraints imposed by an alternative ORF (48).
(D) Complementary coevolution between base-paired sites. Values for pre-
dicted base pairs across the entire genome and over regions with high
degrees of conserved base pairing are shown at left. Values below —1.96
(dashed line) are significant at the P < 0.05 level.

confirm subtle selection of particular structures. The ORF elements
had statistically significant low synonymous substitution rates across
each of the seven alignments (Fig. 2B). Six regions displayed sta-
tistically significant decreases in the synonymous substitution rates
in three or more HCV alignments (Fig. 2C). Of these, four regions
(316, 603, 7802, and 8967) had significantly reduced synonymous
substitution rates in all genotypes examined, indicating that se-
lective forces acting at the RNA level have impacted these
regions throughout the entirety of HCV evolution. Two regions
(6846 and 7493) showed statistically significant increases in
synonymous substitution rate in at least five HCV genotypes.
These sequences are apparently subject to evolutionary pressures
beyond those that maintain specific base pairs or coding potential.

There was strong evidence for coevolution of complementary
base pairs in the complete full-genome SHAPE-informed struc-
tures of the HCV genomes (Fig. 2D and Figs. S1D, S2D, S3D, and
S5B) (z-score = —10.5, P = 8.6 x 107°°). When only the 15 regions
with conserved SHAPE-informed structures were considered, base
pair coevolution was even more significant (z-score = -13.2, P =
8.8 x 10’40); associations were statistically significant for seven of
the 15 structured regions (alignment positions 1, 316, 603, 4678,
7802, 8567, and 8967) (Fig. 2D). In sum, conservation of base
pairing strongly supports the existence of multiple regions in
HCV genomes that contain functionally conserved higher-order
structures.

3694 | www.pnas.org/cgi/doi/10.1073/pnas.1416266112

Importance of SHAPE Data. The global minimum free-energy sec-
ondary structures generated with and without experimental data
shared only 73% of predicted base pairs. This level of dissimi-
larity leads to substantial, nontrivial differences in modeled
structures (35). Only 7 of the 15 regions with mutually conserved
structures were present in some form in the structures predicted
without use of SHAPE data (Fig. S5). When the Shannon
entropy was calculated omitting SHAPE data, overall levels of
entropy were approximately twofold higher, consistent with an
important role for the experimental constraints in distinguishing
between otherwise similarly probable helices. Moreover, the
fivefold fewer mutual low-entropy regions identified in the ab-
sence of SHAPE information only partially overlap with those
detected with SHAPE data (Fig. S5). SHAPE data were also
critical for detecting evolutionary pressures favoring the main-
tenance of genome structures (Fig. S6). Without prior categori-
zation of sites into structured and nonstructured groups it would
be extremely difficult (if not impossible) to use these metrics
alone to identify sites of conserved base pairing. In sum, exper-
imental SHAPE constraints had a significant impact on, and
were essential for, success of the structure-first approach ex-
plored in this work.

Functional Characterization of Conserved RNA Elements. The struc-
ture-first analysis identified six regions, comprising at least nine
individual structural elements, with especially strong evidence of
natural selection (Fig. 3, purple boxes). Five elements corre-
spond to regulatory motifs that have been well characterized: the
IRES domains II-IV, SL9098, and CRE (13-17). We focused on
the four uncharacterized RNA elements (Fig. 44). We intro-
duced mutations that disrupted the structures of each of these
RNA elements in a cell culture-adapted strain (JFH1-QL, ge-
notype 2a) (36). Mutations maintained amino acid sequence and
avoided rare codons (Fig. 4 B-E and Table S2). Replication was
detected by expression of a Gaussia princeps (GLuc) luciferase gene
inserted in the HCV ORF distant from the structures of interest
(Fig. 44) following transfection of synthetic transcripts into Huh-
7.5 cells (37). GLuc activity reflects viral polyprotein synthesis
and is a good surrogate measure of genome replication. Struc-
ture-disrupting mutations within elements J7880 and J8880, both
located in NS5B, reduced replication by four- and twofold, re-
spectively, but both RNAs were replication competent, pro-
ducing substantially more luciferase than a nonviable mutant
(NS5B-GND) (Fig. 4F).

We also measured production of infectious virus in assays that
depend on competency at every stage of the viral replication
cycle (37, 38). Mutant J750 (Fig. 4B), with changes in the Core
protein coding region, and J8640 (Fig. 4D), located within the
NS5B coding region, had 25-fold and 60-fold reductions in in-
fectious virus yields compared with wild-type viral RNA, re-
spectively. This large effect contrasts with the GLuc assays that
showed that these mutants replicate at levels close to that of the
parent (Fig. 4 F and G). This finding suggests these two struc-
tures play important roles in viral assembly. Mutant J7880 (Fig. 4C),
with substitutions in the NS5B coding region, produced fourfold
less infectious virus than the parental RNA (Fig. 4G), consistent
with the observed reduction in GLuc expression (Fig. 4F). Virus
yields from mutant J8880 (Fig. 4E) were similar to yields from
the parent RNA, consistent with the twofold effect of these
substitutions on GLuc expression (compare Fig. 4 F and G). In
sum, all four of these structural mutants were deficient in HCV
genome replication or infectious virus production.

Role of RNA Structure in Immune Evasion. HCV RNA genomes
have evolved under selective pressures exerted by innate immune
sensors that recognize long double-stranded RNA helices (23).
Based on SHAPE-informed secondary structure models, we
generated global profiles of lengths of RNA helices in the three
HCV genomes (Fig. 54, Upper). Because many helices in the
minimum free-energy structures have high Shannon entropies
(Figs. S1-S3), these profiles represent an upper limit on the
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extent of stable base pairing. The median helix length is four
consecutive canonical base pairs, 90% of helices contain seven
base pairs or fewer, and only 2% of helices are longer than nine
base pairs. The longest modeled individual helix in each genome
is 15 or 16 base pairs, and each is located at a different position
in the genome. In a randomly generated RNA, containing the
same dinucleotide distribution as the HCV RNA, the median
helix length is 3 base pairs and the maximum helix size is 10-11
base pairs. The overall helix distribution for HCV is similar to
that of ribosomal RNAs (Fig. 54, Lower). In rRNAs the median
helix length is also four base pairs, but 7% of helices are longer
than nine base pairs. The helix lengths observed in HCV are
substantially below the 16-base pair helix length recognized by
the immune sensor, PKR (39). Although highly structured
overall (18), HCV appears to have evolved to minimize its visi-
bility to innate immune sensors.

HCV RNA is also targeted by the RNase L system (40), which
cleaves RNA at single-stranded, UU/UA (22, 24), or UNN (41)
motifs. RNase L cleaves the H77 HCV genome with high-
efficiency at 10 sites (22, 24). These RNase L cleavage sites occur
in highly flexible, unconstrained regions of the SHAPE-informed
genome model with a mean SHAPE reactivity of 1.05, much
greater than the average for UU/UA motifs (Fig. 5B); most are
in flexible loop regions 5’ of a stable helix of at least five base
pairs (Fig. 5C). Critically, the vast majority of RNase L motifs in
the H77 HCV genome occur in structural contexts unfavorable
for RNase L cleavage.

Discussion

Using a structure-first approach, we characterized the evolutionary
forces shaping genome-wide structure in HCV. SHAPE probing

Mauger et al.

Fig. 3. Comparative HCV RNA genome structure
analysis. Summary of notable regions based on each
analysis class: structured regions (blue), regions of
low Shannon entropy (gray), regions of conserved
base pairing (brown), regions with low synonymous
substitution rates (green), regions with high synon-
ymous substitution rates (red), and regions with
evidence of complementary coevolution of base
pairs (orange) for all three HCV genomes. Six
regions (purple) have conserved base paring in the
SHAPE-directed structural models and phylogenetic
support for broad conservation. These regions are
annotated with the four structural elements (J750,
17880, 18640, and J8880) evaluated in HCV replica-
tion assays. SHAPE-informed secondary structure
models of the JFH1 genome are shown for regions
with notable features conserved across all three HCV
RNA genomes. Nucleotides are colored by SHAPE
reactivity.

revealed 15 highly structured RNA elements that were conserved
in three diverse HCV genomes (Fig. 1B, green regions and blue
bars). Every validated regulatory element discovered over the past
two decades of HCV research—including the IRES, J8647,
SL9098, and CRE elements (8, 9, 14, 17, 31)—were located within
these elements (Fig. 3). The importance of experimental data for
defining accurate structural models is clear based on analysis of the
IRES region: inclusion of SHAPE data improved the accuracy of
de novo single-sequence structure modeling from 42 to 96%
for recovery of accepted base pairs (Figs. S1-S4).

Within the UTRs and in the Core and NS5B protein coding
sequences, we identified four previously uncharacterized struc-
tural elements (Fig. 3, purple regions). Reduced synonymous
substitution rates and complementary coevolution of base-paired
nucleotides (Fig. 2 C and D) suggest that evolution has specifi-
cally maintained RNA structures in these regions since the last
common ancestor of the contemporary HCV lineages. In the
newly identified conserved structures, destabilization caused
substantial effects on HCV replication or infectious virus pro-
duction (Fig. 4). The initial SHAPE analysis that identified
these structures was performed on synthetic RNA transcripts.
The reverse molecular genetics analyses involved transfecting
these RNAs into cells where they initiate a complete viral
replication cycle. Thus, the structures identified in synthetic
RNA transcripts substantially reflect the structure of replicat-
ing viral RNA.

Intriguingly, mutations that disrupted the four newly identified
elements had distinct phenotypes when examined in the JFH1
virus. Mutations within elements J750 and J8640 had dramatic
effects on infectious virus production but only modest impact
on expression of a luciferase reporter protein embedded in the
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Fig. 4. Functional regulatory structures within the JFH1 RNA genome.
(A) JFH1-QL/GLuc expression construct. The four structural elements tested in
functional assays are shown. RNA secondary structure models for (B) J750,
(C) 17880, (D) J8640, and (E) J8880. The positions of structure-disrupting, si-
lent mutations are shown with asterisks. Nucleotides are colored by SHAPE
reactivity (see scale). (F) Relative levels of HCV-encoded G. princeps luciferase
protein, normalized to the 4-h time point, secreted by cells transfected with
JFH1-QL/GLuc RNA or structure disrupting mutants. The bars show the means
of triplicate measurements; error bars report SDs. NS5B-GND is a lethal (neg-
ative) control. (G) Titers of infectious virus generated 72 h posttransfection by
JFH1-QL (no GLuc2A insertion), the lethal mutant NS5B-GND, and structure-
disrupting mutants. Histograms show the mean of triplicate measurements;
error bars report SDs.

HCV polyprotein. Our analysis of the J8640 element revealed
a phenotype distinct from that reported recently (17); we ob-
served a much larger effect on virus production than on genome
replication (Fig. 4). In contrast, mutations in the J7880 and
J8880 elements had comparable significant effects on HCV-
driven luciferase expression and production of infectious virus.
Elements J750 and J8640 may therefore selectively impact
late-stage events, like assembly or packaging. We did not ob-
serve phenotypes when the J750 and J8640 elements were mu-
tated in the context of the genotype la virus, H77S.3 (Fig. S7),
even though structure-based analyses provided strong evidence
that these RNA elements are under evolutionary selection in
both genotypes 1a and 2. H77S.3 replicates less efficiently in cell
culture than JFH1-QL (Fig. 4G and Fig. S7E) and, under our
cell-culture conditions, these elements presumably do not affect
rate limiting viral replication processes.

In the central part of the genome, we identified many well-
defined (low Shannon entropy) structures that do not appear
to involve evolutionarily conserved base-paired configurations
(Figs. 1 and 2C). These regions may be evolving under a complex
mix of pressures related to maintaining highly compacted physical
configurations (18, 19) while evading immune recognition. HCV
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genomes replicate in the presence of innate immune response
sensors that detect single-stranded (RNase L) and double-stranded
(PKR and others) viral RNAs. This work supports a model in
which HCV RNA genome structure balances these opposing
pressures by evolving extensive double-stranded structures con-
sisting predominantly of short helices (Fig. 5).

The models presented here also provide a framework for
understanding RNA genome structure interactions that govern
HCYV pathogenesis. For example, two recent chimpanzee studies
monitored chronic infection by H77c¢ viruses and independently
detected a silent mutation, A7586G, that arose early and was
subsequently maintained during infection (42, 43). In the context
of our H77c structure model, this mutation yields an impressive
6.6 kcal/mol stabilization of a structural element in the H7430
region (Fig. S8), close to the upper limit attainable by converting
any mismatch to a canonical base pair (44). These results suggest
that, in the presence of an active immune system, stabilizing the
H7420 structure confers increased viral fitness.

In sum, these genome-scale, structure-first comparative anal-
yses and structural models provide a critical foundation for un-
derstanding how the HCV genome interacts with both viral and
host proteins during replication, functions in viral gene expres-
sion, and contributes to evasion of innate cellular immune
responses. This concise analytical strategy is broadly applicable
to studying diverse single-stranded RNA viruses that pose seri-
ous current and emerging threats to public health.

Methods

SHAPE Modification of Genomic RNAs. Full-length genomic RNAs for HCV-
H77¢, HCV-JFH1, and HCV-Con1 were synthesized in vitro (5, 6). Purified
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Fig. 5. Relationships between HCV genome structure and innate immune
factor recognition features. (A) RNA helix lengths in the SHAPE-directed
folding models for each of three HCV genomes. For comparison, helix
lengths for models of the human 18S and yeast 28S ribosomal RNAs (49)
are shown. (B) Comparison of measured RNase L cleavage sites (22, 24)
with mean SHAPE reactivities randomly sampled from UU/UA dinucleo-
tides in the H77c genome. Green bars show a bootstrap analysis of mean
SHAPE reactivities for 10,000 populations of UU/UA motifs chosen at
random from the H77 genome. The mean SHAPE reactivity for efficient
RNase L cleavage sites (red line) lies well outside the distribution expected
by chance. (C) RNA structure models for the five strongest RNase L
cleavage sites (triangles) in the H77 genome. Nucleotides are colored by
SHAPE reactivity.
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genomes were folded in 50 mM Hepes (pH 8.0), 5 mM MgCl,, 200 mM po-
tassium acetate (pH 7.5) by heating to 65 °C and slowly cooling to 37 °C. RNA
was modified with 1M7 and SHAPE-MaP libraries prepared (26). Full SHAPE
data and details regarding genomic subclones, SHAPE-MaP massively par-
allel sequencing, and RNA structure analysis are available in S/ Methods and
Datasets S1 and S2. SHAPE reactivities are not reported for the poly-U region
and X-tail in the 3" UTR because of low sequencing depth.

HCV Bioinformatic Analyses. We assembled clinically derived HCV sequences
(SI Methods, Figs. S7 and S8, and Dataset S3) and used two parametric
maximume-likelihood approaches to examine selective maintenance of
structural elements. The FUBAR method (45) was applied to seven HCV
datasets to test for statistically significant fluctuations in synonymous sub-
stitution rates between codons containing base-paired versus unpaired
nucleotides (46). A modification of the Spidermonkey approach (47) was
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HCV genotypes.

HCV Replication Assays. Structure-disrupting mutations were created in the
JFH1-QL and H77S.3 genomes and their GLuc2A counterparts (Table S2), and
synthetic RNAs produced from these clones were then assayed for their
replication competence by measuring luciferase expression and infectious
virus yields (36-38).
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