University of Massachusetts Boston ScholarWorks at UMass Boston

Office of Community Partnerships Posters

Office of Community Partnerships

4-10-2013

Global risk assessment of cardiovascular disease in resource constrained settings

Jacob Kariuki University of Massachusetts Boston

Eileen M. Stuart-Shor University of Massachusetts Boston, eileen.stuart-shor@umb.edu

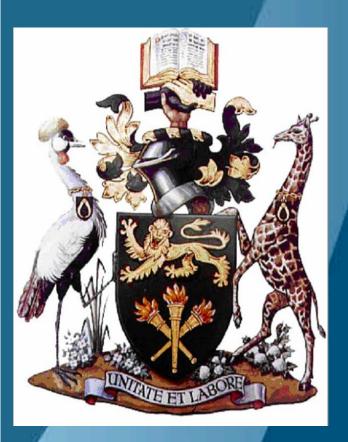
Libin Zhang University of Massachusetts Boston, libin.zhang@umb.edu

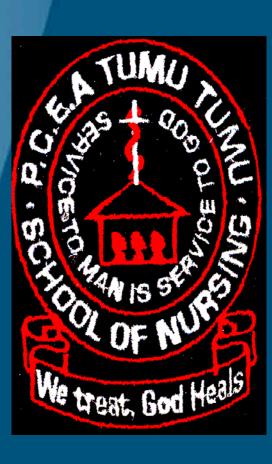
Annya Volkova University of Massachusetts Boston

Jaime Halliday University of Massachusetts Boston

See next page for additional authors

Follow this and additional works at: http://scholarworks.umb.edu/ocp_posters Part of the <u>Cardiovascular Diseases Commons</u>, <u>Community Engagement Commons</u>, and the International Public Health Commons


Recommended Citation


Kariuki, Jacob; Stuart-Shor, Eileen M.; Zhang, Libin; Volkova, Annya; Halliday, Jaime; Sayer, Shannon; DeMita, Jessica; Golden, Darren; Muchira, James; Kimani, Samuel; and Maina, Faith, "Global risk assessment of cardiovascular disease in resource constrained settings" (2013). *Office of Community Partnerships Posters*. Paper 151. http://scholarworks.umb.edu/ocp_posters/151

This Presentation is brought to you for free and open access by the Office of Community Partnerships at ScholarWorks at UMass Boston. It has been accepted for inclusion in Office of Community Partnerships Posters by an authorized administrator of ScholarWorks at UMass Boston. For more information, please contact library.uasc@umb.edu.

Authors

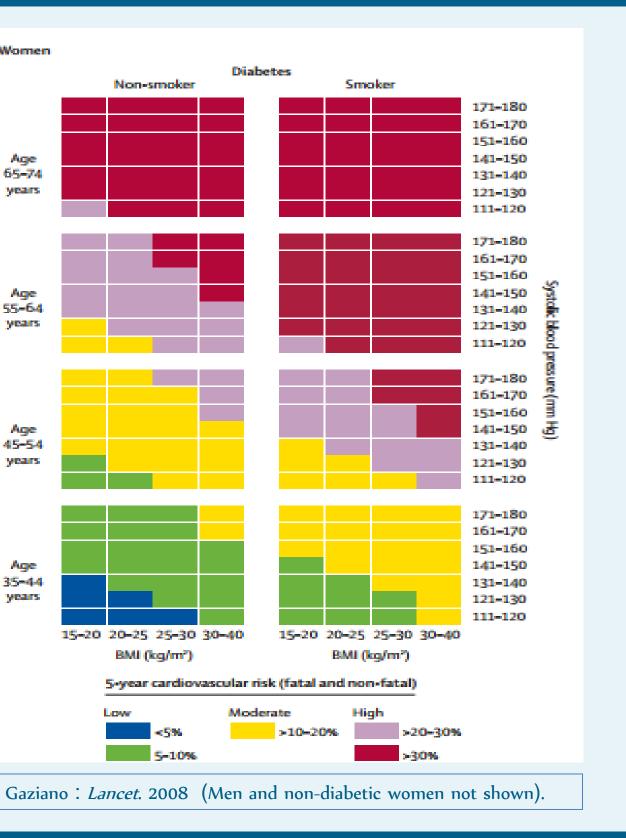
Jacob Kariuki, Eileen M. Stuart-Shor, Libin Zhang, Annya Volkova, Jaime Halliday, Shannon Sayer, Jessica DeMita, Darren Golden, James Muchira, Samuel Kimani, and Faith Maina

BACKGROUND

- Cardiovascular disease (CVD) is an emerging problem in Sub-Saharan Africa.
- Many current guidelines recommend using global risk assessment (GRA) to quantify the risk for developing CVD and to guide treatment and policy.
- Most GRA tools require lipid measures which are not readily available in resource-constrained settings. Of the 3 most published non-laboratory based tools: Gaziano and Framingham substitute BMI for cholesterol; WHO does not include BMI or cholesterol.

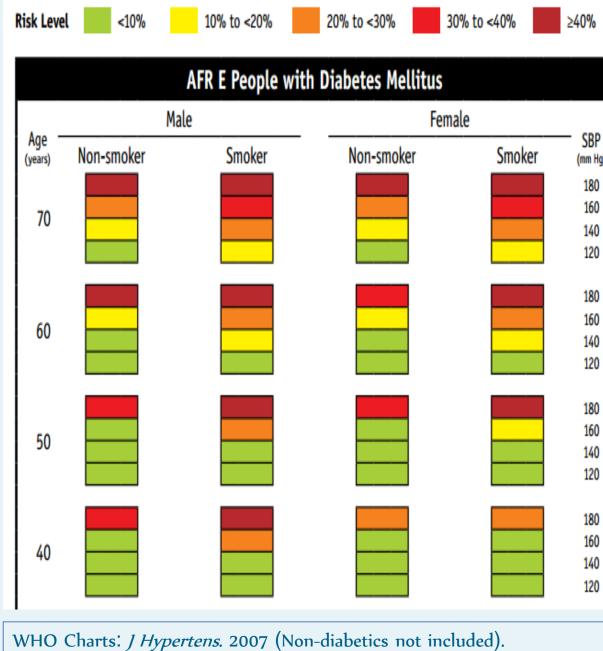
RESEARCH QUESTIONS/HYPOTHESIS

- Is it feasible to implement GRA at the point-of-care in a resource constrained country?
- In this convenience sample, are the Gaziano, Framingham and WHO global risk score (GRS) estimates similar?


METHODS

- A convenience sample of consecutive patients were screened/ treated for CV risk factors had risk factors measured.
- US/Kenyan teams used validated protocols for physiologic/ behavioral measures at 5 Kenyan community health clinics.
- Gaziano and Framingham covariates (age, gender, smoking, diabetes, SBP, BMI, antihypertensive Rx); WHO covariates (age, gender, smoking, diabetes, SBP).
- Gaziano GRS was calculated with paper tool at the point-of-care and recalculated by the researchers; Framingham and WHO GRS was calculated from the dataset by researchers.
- Clinical data was abstracted and analyzed using Stata[®].
- US/Kenyan IRB approval was obtained.

	Covariates									
Algorithms	Sex	Age	Smoking	BP	HTN treatment	BMI	Diabetes	History (hx)	Endpoints	Risk Categories
Non-laboratory based- Framingham ¹²	M or F	30-74	 ⟨ Yes, current smoker ⟨ No, never or previous smoker 	Systolic 120-160	 Yes based on self- report No based on self- report 	kg/m²	<pre> Yes, on insulin or oral hypoglycemi c medications, or FBS ≥126 mg/dl ⟨ No, none of the above criteria</pre>	NA	10-year risk of general and individual CVD events (coronary, cerebro- vascular, and peripheral arterial disease and heart failure)	0-6%, 6-20%, >20%
Non-laboratory based-Gaziano ¹⁰	M or F	35-74	 Yes, past or current smoker No, never 	Systolic 111- 180	 Yes to current treatment No current treatment 	kg/m²	 Yes, diabetes reported No, diabetes not reported 	NA	5-year risk for first-time fatal and non-fatal cardiovascular disease events.	5–10% >10–20% >20–30%
Non-laboratory based-WHO/ISH ¹⁴	M or F	40-70	<pre> Yes, current or ex- smoker <1yr No, never or ex-smoker >1yr </pre>	Systolic 140-180	NA	NA	⟨Yes, on insulin or oral hypoglycemic drugs; or FBS · ≥126 mg/dl; or postprandial plasma glucose 200 mg/l on two ⟨ No, none of above criteria.		10-year combined risk for acute myocardial infarction and stroke (Fatal and nonfatal).	<10%, 10-<20% 20-<30% 30-<40% ≥40%


Global risk assessment of cardiovascular disease in resource constrained settings

Jacob Kariuki¹, Eileen M Stuart-Shor¹, Libin Zhang¹, Annya Volkova¹, Jaime Halliday¹, Shannon Sayer¹, Jessica DeMita¹, Darren Golden¹, James Muchira², Samuel Kimani³, Faith Maina⁴; University of Massachusetts¹, Boston; Tumutumu Hospital School of Nursing²; University of Nairobi³, Kijabe Hospital School of Nursing⁴

NON LABORATORY BASED GRA TOOLS

Figure 4. WHO/ISH risk prediction chart for AFR E. 10-year risk of a fatal or non-fatal cardiovascular event by gender, age, systolic blood pressure, smoking status and presence of absence of diabetes mellitu

RESULTS

Sample Characteristics						
	All (N=941)					
	n	%				
Age (mean/SD±)	48.6	18.70				
Women	734	78.76				
Tribe (Kikuyu)	812	87.88				
Hx HTN	207	26.30				
Anti-HTN Rx	170	18.12				
Hx DM	64	6.89				
Hx Obesity	94	10.28				
Hx High Chol	28	3.03				
Hx CVD	58	6.24				
Current Smoking	55	6.29				

Distribution of Risk Factors by Clinical Cut Points								
	Stratified by Gender							
		All	Men		Women			
	n	%	n	%	n	%	p value	
Mean Blood Pressure [S	Mean Blood Pressure [SBP 137.61, SD 23.61(N=941)]							
SBP ≥ 140 mmHg	383	40.07	88	44.44	290	39.51	0.21	
Mean Blood Glucose [97	7.53, SE) 38.7 <i>,</i> (n	=935)]					
FBS≥126 or Non	39	4.82	8	4.76	31	4.87	0.95	
FBS>200								
BMI [24.89, SD 4.92, (n=893)]								
BMI ≥ 25	398	44.57	44	23.40	353	50.72	0.00	
BMI ≥ 30	139	15.57	9	4.79	129	18.53	0.00	

SBP = Systolic blood pressure; prehypertension 120-139/90 mmHg; Stage 1= 140-159/90 mmHg; Stage 2 = ≥ 160/90 mmHg

RBS = Random blood sugar; glucose intol ≥ 110 mg/dL; Diabetes ≥ 126 mg/dL fasting; ≥ 140 mg/dL non-fasting BMI = Body mass index; malnourished <18; normal 18-25; overweight 25-29; obese ≥ 30

Fa	ctors	
		Absolute Risk
	%	Low
3	22.69	Moderate

High

Key: Global Risk Scores for Framingham & WHO Indicates 10 year risk of developing CVD while Gaziano GRA indicates 5 year risk of developing GVD. Gaziano: Low <10%; Moderate >=10% to <20%; High >=20% Framingham: Low <6%; Moderate >=6% to <20%; High >=20% WHO: Low <10%; Moderate >=10% to <30%; High >=30%

Number of Risk

Composite Risk	n	%
0 Risk Factors	123	22.69
1 Risk Factor	146	26.94
2+ Risk Factors	273	50.37

Key: Composite risk includes age, SBP, BMI, smoking, DM, CVD, high chol.

General CVD Risk Prediction Using BMI Sex: Sex: M F Age (years): Systolic Blood Pressure (mmHg): Systolic Blood Pressure (mmHg): Treatment for Hypertension: Yes No Current smoker: Yes No Diabetes: Yes No Diabetes: Catculate Yes No Body Mass Index: Catculate Your Heart/Vascular Age: 30 10 Year Risk Normal 1.1% Optimal 0.7%
D'AgostinO : <i>Circulation</i> . 2008 (Framingham non-lab interactive calculator).

Pairwise Correlation o						
	FRscore					
FRscore	1.0000					
GAZ	0.8652					
	0.0000					
WHO	0.3606					
	0.0000					
FRscore =	Non-lab Fran					

0.3332 1.0000 0.0000 mingham GRS **GRS = Gaziano non-lab GRS** WHO = WHO non-lab GRS

- 79.24% accuracy.
- delivering evidence-based treatment.
- dataset.
- these tools in low income countries.

Gazian	o GRA		n-lab ngham	Non-lab WHO		
n	%	n	%	n	%	
486	56.32	556	55.88	815	94.55	
150	17.38	258	25.90	33	3.83	
227	26.30	181	18.20	14	1.62	

RESULTS

f the 3 Global Risk Scores (GRS) GAZ WHO

1.0000

CONCLUSIONS

GRA scores can be generated at the point-of-care using simple screening information and paper tools with

The population screened had a high clustering of CV risk factors and high risk GRA scores; and that information can be available in real-time to guide clinicians in

Gaziano GRS was highly correlated with Non-lab Framingham (0.87) but WHO GRS had low correlation with Framingham and Gaziano (0.36; 0.33). [Limitations; the survival data used to calculate Framingham GRS is based on US population; WHO is based on a hypothetical

At the population level GRA might be helpful to assess country-specific CVD risk, to plan risk reduction strategies and to guide health services policy in this resource-constrained country but the best tool is unclear. Population based cohort studies are needed to validate