70 research outputs found
New spectra in the HEIDI Higgs models
We study the so-called HEIDI models, which are renormalizable extensions of
the standard model with a higher dimensional scalar singlet field. As an
additional parameter we consider a higher-dimensional mixing mass parameter.
This leads to enriched possibilities compared to a previous study. We find
effective spectral densities of the Higgs propagator, consisting of one, two or
no particle peaks, together with a continuum. We compare with the LEP-2 data
and determine for which range of the model parameters the data can be
described. Assuming two peaks to be present we find for the new mass scale
\nu\approx 56\pm12 \gev, largely independent of the dimension. In the
limiting case of and two peaks we find a higher dimensional
coupling constant , indicative of strong interactions
among the higher dimensional fields. The LHC will not be able to study this
Higgs field.Comment: 17 pages, 4 figure
Bulk Scalar Stabilization of the Radion without Metric Back-Reaction in the Randall-Sundrum Model
Generalizations of the Randall-Sundrum model containing a bulk scalar field
interacting with the curvature through the general coupling are considered. We derive the general form of the effective 4D
potential for the spin-zero fields and show that in the mass matrix the radion
mixes with the Kaluza-Klein modes of the bulk scalar fluctuations. We
demonstrate that it is possible to choose a non-trivial background form
(where is the extra dimension coordinate) for the bulk scalar
field such that the exact Randall-Sundrum metric is preserved (i.e. such that
there is no back-reaction). We compute the mass matrix for the radion and the
KK modes of the excitations of the bulk scalar relative to the background
configuration and find that the resulting mass matrix implies a
non-zero value for the mass of the radion (identified as the state with the
lowest eigenvalue of the scalar mass matrix). We find that this mass is
suppressed relative to the Planck scale by the standard warp factor needed to
explain the hierarchy puzzle, implying that a mass \sim 1\tev is a natural
order of magnitude for the radion mass. The general considerations are
illustrated in the case of a model containing an interaction term.Comment: 22 pages, 3 figure
Soft two-meson-exchange nucleon-nucleon potentials. II. One-pair and two-pair diagrams
Two-meson-exchange nucleon-nucleon potentials are derived where either one or
both nucleons contains a pair vertex. Physically, the meson-pair vertices are
meant to describe in an effective way (part of) the effects of heavy-meson
exchange and meson-nucleon resonances. {}From the point of view of ``duality,''
these two kinds of contribution are roughly equivalent. The various
possibilities for meson pairs coupling to the nucleon are inspired by the
chiral-invariant phenomenological Lagrangians that have appeared in the
literature. The coupling constants are fixed using the linear model.
We show that the inclusion of these two-meson exchanges gives a significant
improvement over a potential model including only the standard one-boson
exchanges.Comment: 21 pages RevTeX, 7 postscript figures; revised version as to appear
in Phys. Rev.
On the pion-nucleon coupling constant
In view of persisting misunderstanding about the determination of the
pion-nucleon coupling constants in the Nijmegen multienergy partial-wave
analyses of pp, np, and pbar-p scattering data, we present additional
information which may clarify several points of discussion. We comment on
several recent papers addressing the issue of the pion-nucleon coupling
constant and criticizing the Nijmegen analyses.Comment: 19 pages, Nijmegen preprint THEF-NYM-92-0
A stochastic model for heart rate fluctuations
Normal human heart rate shows complex fluctuations in time, which is natural,
since heart rate is controlled by a large number of different feedback control
loops. These unpredictable fluctuations have been shown to display fractal
dynamics, long-term correlations, and 1/f noise. These characterizations are
statistical and they have been widely studied and used, but much less is known
about the detailed time evolution (dynamics) of the heart rate control
mechanism. Here we show that a simple one-dimensional Langevin-type stochastic
difference equation can accurately model the heart rate fluctuations in a time
scale from minutes to hours. The model consists of a deterministic nonlinear
part and a stochastic part typical to Gaussian noise, and both parts can be
directly determined from the measured heart rate data. Studies of 27 healthy
subjects reveal that in most cases the deterministic part has a form typically
seen in bistable systems: there are two stable fixed points and one unstable
one.Comment: 8 pages in PDF, Revtex style. Added more dat
Equation of State of Oscillating Brans-Dicke Scalar and Extra Dimensions
We consider a Brans-Dicke scalar field stabilized by a general power law
potential with power index at a finite equilibrium value. Redshifting
matter induces oscillations of the scalar field around its equilibrium due to
the scalar field coupling to the trace of the energy momentum tensor. If the
stabilizing potential is sufficiently steep these high frequency oscillations
are consistent with observational and experimental constraints for arbitrary
value of the Brans-Dicke parameter . We study analytically and
numerically the equation of state of these high frequency oscillations in terms
of the parameters and and find the corresponding evolution of the
universe scale factor. We find that the equation of state parameter can be
negative and less than -1 but it is not related to the evolution of the scale
factor in the usual way. Nevertheless, accelerating expansion is found for a
certain parameter range. Our analysis applies also to oscillations of the size
of extra dimensions (the radion field) around an equilibrium value. This
duality between self-coupled Brans-Dicke and radion dynamics is applicable for
where D is the number of extra dimensions.Comment: 10 two-column pages, RevTex4, 8 figures. Added clarifying
discussions, new references. Accepted in Phys. Rev. D (to appear
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
Role of N*(1650) in the near threshold pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions
We investigate the pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions at
beam energies near their thresholds within an effective Lagrangian model, where
the strangeness production proceeds via the excitation of N*(1650), N*(1710),
and N*(1720) baryonic resonances. It is found that the (1650) resonance
dominates both these reactions at near threshold energies. The contributions
from this resonance together with the final state interaction among the
outgoing particles are able to explain the observed beam energy dependence of
the ratio of the cross sections of the two reactions in the near threshold
region.Comment: Revised version, Fig. 4 is updated with the revised data, to appear
in Phys. Rev. C (Rapid Communications
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Defect-mediated ferromagnetism in ZnO:Mn nanorods
In this work, the structural, chemical and magnetic properties of ZnO:Mn nanorods were investigated. Firstly, well-aligned ZnO nanorods with their long axis parallel to the crystalline c-axis were successfully grown by the vapor phase transport technique on Si substrates coated with a ZnO buffer layer. Mn metal was then diffused into these nanorods at different temperatures in vacuum. From SEM results, ZnO:Mn nanorods were observed to have diameters of ~100 nm and lengths of 4 ”m. XPS analysis showed that the Mn dopant substituted into the ZnO matrix with a valence state of +2. Magnetic measurements performed at room temperature revealed that undoped ZnO nanorods exhibit ferromagnetic behavior which may be related to oxygen vacancy defect-mediated d0 ferromagnetism. ZnO:Mn samples were seen to show an excess room temperature ferromagnetism that is attributed to the presence of oxygen vacancy defects forming bound magnetic polarons involving Mn
- âŠ