1,262 research outputs found
Chemical potential oscillations from a single nodal pocket in the underdoped high-Tc superconductor YBa2Cu3O6+x
The mystery of the normal state in the underdoped cuprates has deepened with
the use of newer and complementary experimental probes. While photoemission
studies have revealed solely `Fermi arcs' centered on nodal points in the
Brillouin zone at which holes aggregate upon doping, more recent quantum
oscillation experiments have been interpreted in terms of an ambipolar Fermi
surface, that includes sections containing electron carriers located at the
antinodal region. To address the question of whether an ambipolar Fermi surface
truly exists, here we utilize measurements of the second harmonic quantum
oscillations, which reveal that the amplitude of these oscillations arises
mainly from oscillations in the chemical potential, providing crucial
information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In
particular, the detailed relationship between the second harmonic amplitude and
the fundamental amplitude of the quantum oscillations leads us to the
conclusion that there exists only a single underlying quasi-two dimensional
Fermi surface pocket giving rise to the multiple frequency components observed
via the effects of warping, bilayer splitting and magnetic breakdown. A range
of studies suggest that the pocket is most likely associated with states near
the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high
magnetic fields.Comment: 7 pages, 4 figure
Neutron Stars in Teleparallel Gravity
In this paper we deal with neutron stars, which are described by a perfect
fluid model, in the context of the teleparallel equivalent of general
relativity. We use numerical simulations to find the relationship between the
angular momentum of the field and the angular momentum of the source. Such a
relation was established for each stable star reached by the numerical
simulation once the code is fed with an equation of state, the central energy
density and the ratio between polar and equatorial radii. We also find a regime
where linear relation between gravitational angular momentum and moment of
inertia (as well as angular velocity of the fluid) is valid. We give the
spatial distribution of the gravitational energy and show that it has a linear
dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with
arXiv:1206.331
Ageing and entrepreneurial preferences
Previous research on age and entrepreneurship assumed homogeneity and downplayed age-related differences in the motives and aims underlying enterprising behaviour. We argue that the heterogeneity of entrepreneurship influences how the level of entrepreneurial activity varies with age. Using a sample of 2566 respondents from 27 European countries we show that entrepreneurial activity increases almost linearly with age for individuals who prefer to only employ themselves (self-employers), whereas it increases up to a critical threshold age (late 40s) and decreases thereafter for those who aspire to hire workers (owner-managers). Age has a considerably smaller effect on entrepreneurial behaviour for those who do not prefer self-employment but are pushed into it by lack of alternative employment opportunities (reluctant entrepreneurs). Our results question the conventional wisdom that entrepreneurial activity declines with age and suggest that effective responses to demographic changes require policy makers to pay close attention to the heterogeneity of entrepreneurial preferences
Parametric study of EEG sensitivity to phase noise during face processing
<b>Background: </b>
The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model.
<b>Results: </b>
Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces.
<b>Conclusion: </b>
Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses
The statistical neuroanatomy of frontal networks in the macaque
We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Multiple and Multidimensional life transitions in the context of life-limiting health conditions:Longitudinal study focussing on perspectives of Young Adults, Families and Professionals
Background:
There is a dearth of literature that investigates life transitions of young adults (YAs) with life-limiting conditions, families and professionals. The scant literature that is available has methodological limitations, including not listening to the voice of YAs, collecting data retrospectively, at one time point, from one group’s perspective and single case studies. The aim of this study was to address the gaps found in our literature review and provide a clearer understanding of the multiple and multi-dimensional life transitions experienced by YAs and significant others, over a period of time.
Methods:
This qualitative study used a longitudinal design and data were collected using semi-structured interviews over a 6-month period at 3 time points. Participants included 12 YAs with life-limiting conditions and their nominated significant others (10 family members and 11 professionals). Data were analysed using a thematic analysis approach.
Results:
Life transitions of YA and significant others are complex; they experience multiple and multi-dimensional transitions across several domains. The findings challenge the notion that all life transitions are triggered by health transitions of YAs, and has highlighted environmental factors (attitudinal and systemic) that can be changed to facilitate smoother transitions in various aspects of their lives.
Conclusions:
This study makes a unique and significant contribution to literature. It provides evidence and rich narratives for policy makers and service providers to change policies and practices that are in line with the needs of YAs with life-limiting conditions as they transition to adulthood. Families and professionals have specific training needs that have not yet been met fully
Autoimmune and autoinflammatory mechanisms in uveitis
The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders
Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach
Background: In this study, we quantified age-related changes in the time-course of face processing
by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our
approach does not rely on peak measurements and can provide a more sensitive measure of
processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded
discrimination task between two faces. The phase spectrum of these faces was manipulated
parametrically to create pictures that ranged between pure noise (0% phase information) and the
undistorted signal (100% phase information), with five intermediate steps.
Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was
higher, in younger than older observers. ERPs from each subject were entered into a single-trial
general linear regression model to identify variations in neural activity statistically associated with
changes in image structure. The earliest age-related ERP differences occurred in the time window
of the N170. Older observers had a significantly stronger N170 in response to noise, but this age
difference decreased with increasing phase information. Overall, manipulating image phase
information had a greater effect on ERPs from younger observers, which was quantified using a
hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus
parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at
multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower
processing in older observers starting around 120 ms after stimulus onset. This age-related delay
increased over time to reach a maximum around 190 ms, at which latency younger observers had
around 50 ms time lead over older observers.
Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual
system sensitivity to image structure, the current study demonstrates that older observers
accumulate face information more slowly than younger subjects. Additionally, the N170 appears to
be less face-sensitive in older observers
- …
