348 research outputs found
Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light
Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400–700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700–800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL–PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL
Network Archaeology: Uncovering Ancient Networks from Present-day Interactions
Often questions arise about old or extinct networks. What proteins interacted
in a long-extinct ancestor species of yeast? Who were the central players in
the Last.fm social network 3 years ago? Our ability to answer such questions
has been limited by the unavailability of past versions of networks. To
overcome these limitations, we propose several algorithms for reconstructing a
network's history of growth given only the network as it exists today and a
generative model by which the network is believed to have evolved. Our
likelihood-based method finds a probable previous state of the network by
reversing the forward growth model. This approach retains node identities so
that the history of individual nodes can be tracked. We apply these algorithms
to uncover older, non-extant biological and social networks believed to have
grown via several models, including duplication-mutation with complementarity,
forest fire, and preferential attachment. Through experiments on both synthetic
and real-world data, we find that our algorithms can estimate node arrival
times, identify anchor nodes from which new nodes copy links, and can reveal
significant features of networks that have long since disappeared.Comment: 16 pages, 10 figure
Uncertainty estimation for operational ocean forecast products-a multi-model ensemble for the North Sea and the Baltic Sea
Multi-model ensembles for sea surface temperature (SST), sea surface salinity (SSS), sea surface currents (SSC), and water transports have been developed for the North Sea and the Baltic Sea using outputs from several operational ocean forecasting models provided by different institutes. The individual models differ in model code, resolution, boundary conditions, atmospheric forcing, and data assimilation. The ensembles are produced on a daily basis. Daily statistics are calculated for each parameter giving information about the spread of the forecasts with standard deviation, ensemble mean and median, and coefficient of variation. High forecast uncertainty, i.e., for SSS and SSC, was found in the Skagerrak, Kattegat (Transition Area between North Sea and Baltic Sea), and the Norwegian Channel. Based on the data collected, longer-term statistical analyses have been done, such as a comparison with satellite data for SST and evaluation of the deviation between forecasts in temporal and spatial scale. Regions of high forecast uncertainty for SSS and SSC have been detected in the Transition Area and the Norwegian Channel where a large spread between the models might evolve due to differences in simulating the frontal structures and their movements. A distinct seasonal pattern could be distinguished for SST with high uncertainty between the forecasts during summer. Forecasts with relatively high deviation from the multi-model ensemble (MME) products or the other individual forecasts were detected for each region and each parameter. The comparison with satellite data showed that the error of the MME products is lowest compared to those of the ensemble members
Light-driven chloride transport kinetics of halorhodopsin
Despite growing interest in light-driven ion pumps for use in optogenetics, current estimates of their transport rates span two orders of magnitude due to challenges in measuring slow transport processes and determining protein concentration and/or orientation in membranes in vitro. In this study, we report, to our knowledge, the first direct quantitative measurement of light-driven Cl transport rates of the anion pump halorohodopsin from Natronomonas pharaonis (NpHR). We used light-interfaced voltage clamp measurements on NpHR-expressing oocytes to obtain a transport rate of 219 (± 98) Cl /protein/s for a photon flux of 630 photons/protein/s. The measurement is consistent with the literature-reported quantum efficiency of ∼30% for NpHR, i.e., 0.3 isomerizations per photon absorbed. To reconcile our measurements with an earlier-reported 20 ms rate-limiting step, or 35 turnovers/protein/s, we conducted, to our knowledge, novel consecutive single-turnover flash experiments that demonstrate that under continuous illumination, NpHR bypasses this step in the photocycle
Emergence of scale-free leadership structure in social recommender systems
The study of the organization of social networks is important for
understanding of opinion formation, rumor spreading, and the emergence of
trends and fashion. This paper reports empirical analysis of networks extracted
from four leading sites with social functionality (Delicious, Flickr, Twitter
and YouTube) and shows that they all display a scale-free leadership structure.
To reproduce this feature, we propose an adaptive network model driven by
social recommending. Artificial agent-based simulations of this model highlight
a "good get richer" mechanism where users with broad interests and good
judgments are likely to become popular leaders for the others. Simulations also
indicate that the studied social recommendation mechanism can gradually improve
the user experience by adapting to tastes of its users. Finally we outline
implications for real online resource-sharing systems
Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f
Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700–800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the “red limit” for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth
Isolation and sequence of a tomato cDNA clone encoding subunit II of the photosystem I reaction center
We report here the isolation and nucleotide sequence of a cDNA clone encoding a phtosystem I polypeptide that is recognized by a polyclonal antibody prepared against subunit II of the photosystem I reaction center. The transit peptide processing site was determined to occur after Met 50 by N terminal sequencing. The decuced sequence of this protein predicts that the polypeptide has a net positive charge (pI=9.6) and no membrane spanning regions are evident from the hydropathy plot. Based on these considerations and the fact that subunit II is solubilized by alkali treatment of thylakoids, we concluded that subunit II is an extrinsic membrane protein. The absence of hydrophobic regions characteristic of thylakoid transfer domains furthermore implies that subunit II is localized on the stromal side of the membrane.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43419/1/11103_2004_Article_BF00014949.pd
Towards computerizing intensive care sedation guidelines: design of a rule-based architecture for automated execution of clinical guidelines
<p>Abstract</p> <p>Background</p> <p>Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs.</p> <p>The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase.</p> <p>Methods</p> <p>A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA).</p> <p>Results</p> <p>The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows.</p> <p>Conclusions</p> <p>The framework is an effective solution for computerizing clinical guidelines as it allows for quick development, evaluation and human-readable visualization of the Rules and has a good performance. By monitoring the parameters of the patient to automatically detect exceptional situations and problems and by notifying the medical staff of tasks that need to be performed, the computerized sedation guideline improves the execution of the guideline.</p
- …