269 research outputs found

    Impaired Hyperglycemia-Induced Delay in Gastric Emptying in Patients With Type 1 Diabetes Deficient for Islet Amyloid Polypeptide

    Get PDF
    OBJECTIVE—Slowing of gastric emptying by hyperglycemia, a physiological response to minimize postprandial hyperglycemia, may be impaired in patients with type 1 diabetes. The causes and consequences on glucose homeostasis are unknown

    Age-Corrected Beta Cell Mass Following Onset of Type 1 Diabetes Mellitus Correlates with Plasma C-Peptide in Humans

    Get PDF
    The inability to produce insulin endogenously precipitates the clinical symptoms of type 1 diabetes mellitus. However, the dynamic trajectory of beta cell destruction following onset remains unclear. Using model-based inference, the severity of beta cell destruction at onset decreases with age where, on average, a 40% reduction in beta cell mass was sufficient to precipitate clinical symptoms at 20 years of age. While plasma C-peptide provides a surrogate measure of endogenous insulin production post-onset, it is unclear as to whether plasma C-peptide represents changes in beta cell mass or beta cell function. The objective of this paper was to determine the relationship between beta cell mass and endogenous insulin production post-onset.Model-based inference was used to compare direct measures of beta cell mass in 102 patients against contemporary measures of plasma C-peptide obtained from three studies that collectively followed 834 patients post-onset of clinical symptoms. An empirical Bayesian approach was used to establish the level of confidence associated with the model prediction. Age-corrected estimates of beta cell mass that were inferred from a series of landmark pancreatic autopsy studies significantly correlate (p>0.9995) with contemporary measures of plasma C-peptide levels following onset.Given the correlation between beta cell mass and plasma C-peptide following onset, plasma C-peptide may provide a surrogate measure of beta cell mass in humans. The clinical relevance of this study is that therapeutic strategies that provide an increase in plasma C-peptide over the predicted value for an individual may actually improve beta cell mass. The model predictions may establish a standard historical "control" group - a prior in a Bayesian context - for clinical trials

    PANIC-ATTAC: A Mouse Model for Inducible and Reversible β-Cell Ablation

    Get PDF
    OBJECTIVE—Islet transplantations have been performed clinically, but their practical applications are limited. An extensive effort has been made toward the identification of pancreatic β-cell stem cells that has yielded many insights to date, yet targeted reconstitution of β-cell mass remains elusive. Here, we present a mouse model for inducible and reversible ablation of pancreatic β-cells named the PANIC-ATTAC (pancreatic islet β-cell apoptosis through targeted activation of caspase 8) mouse

    Differential hypoglycaemic, anorectic, autonomic and emetic effects of the glucagon-like peptide receptor agonist, exendin-4, in the conscious telemetered ferret.

    Get PDF
    Background: Rodents are incapable of emesis and consequently the emetic potential of glucagon-like peptide-1 receptor (GLP-1R) agonists in studies designed to assess a potential blood glucose lowering action of the compound was missed. Therefore, we investigated if the ferret, a carnivore with demonstrated translation capability in emesis research, would identify the emetic potential of the GLP-1R agonist, exendin-4, and any associated effects on gastric motor function, appetite and cardiovascular homeostasis. Methods: The biological activity of the GLP-1R ligands was investigated in vivo using a glucose tolerance test in pentobarbitone-anesthetised ferrets and in vitro using organ bath studies. Radiotelemetry was used to investigate the effect of exendin-4 on gastric myoelectric activity (GMA) and cardiovascular function in conscious ferrets; behaviour was also simultaneously assessed. Western blot was used to characterize GLP-1R distribution in the gastrointestinal and brain tissues. Results: In anesthetised ferrets, exendin-4 (30 nmol/kg, s.c.) reduced experimentally elevated blood glucose levels by 36.3%, whereas the GLP-1R antagonist, exendin (9–39) (300 nmol/kg, s.c.) antagonised the effect and increased AUC0–120 by 31.0% when injected alone (P < 0.05). In animals with radiotelemetry devices, exendin-4 (100 nmol/kg, s.c.) induced emesis in 1/9 ferrets, but inhibited food intake and decreased heart rate variability (HRV) in all animals (P < 0.05). In the animals not exhibiting emesis, there was no effect on GMA, mean arterial blood pressure, heart rate, or core body temperature. In the ferret exhibiting emesis, there was a shift in the GMA towards bradygastria with a decrease in power, and a concomitant decrease in HRV. Western blot revealed GLP-1R throughout the gastrointestinal tract but exendin-4 (up to 300 nM) and exendin (9–39), failed to contract or relax isolated ferret gut tissues. GLP-1R were found in all major brain regions and the levels were comparable those in the vagus nerve. Conclusions: Peripherally administered exendin-4 reduced blood glucose and inhibited feeding with a low emetic potential similar to that in humans (11% vs 12.8%). A disrupted GMA only occurred in the animal exhibiting emesis raising the possibility that disruption of the GMA may influence the probability of emesis occurring in response to treatment with GLP-1R agonists

    A human ribonuclease induces apoptosis associated with p21WAF1/CIP1 induction and JNK inactivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ribonucleases are promising agents for use in anticancer therapy. Among the different ribonucleases described to be cytotoxic, a paradigmatic example is onconase which manifests cytotoxic and cytostatic effects, presents synergism with several kinds of anticancer drugs and is currently in phase II/III of its clinical trial as an anticancer drug against different types of cancer. The mechanism of cytotoxicity of PE5, a variant of human pancreatic ribonuclease carrying a nuclear localization signal, has been investigated and compared to that of onconase.</p> <p>Methods</p> <p>Cytotoxicity was measured by the MTT method and by the tripan blue exclusion assay. Apoptosis was assessed by flow cytometry, caspase enzymatic detection and confocal microscopy. Cell cycle phase analysis was performed by flow cytometry. The expression of different proteins was analyzed by western blot.</p> <p>Results</p> <p>We show that the cytotoxicity of PE5 is produced through apoptosis, that it does not require the proapoptotic activity of p53 and is not prevented by the multiple drug resistance phenotype. We also show that PE5 and onconase induce cell death at the same extent although the latter is also able to arrest the cell growth. We have compared the cytotoxic effects of both ribonucleases in the NCI/ADR-RES cell line by measuring their effects on the cell cycle, on the activation of different caspases and on the expression of different apoptosis- and cell cycle-related proteins. PE5 increases the number of cells in S and G<sub>2</sub>/M cell cycle phases, which is accompanied by the increased expression of cyclin E and p21<sup>WAF1/CIP1 </sup>together with the underphosphorylation of p46 forms of JNK. Citotoxicity of onconase in this cell line does not alter the cell cycle phase distribution and it is accompanied by a decreased expression of XIAP</p> <p>Conclusions</p> <p>We conclude that PE5 kills the cells through apoptosis associated with the p21<sup>WAF1/CIP1 </sup>induction and the inactivation of JNK. This mechanism is significantly different from that found for onconase.</p

    Effect of additional treatment with EXenatide in patients with an Acute Myocardial Infarction (EXAMI): study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial infarction causes irreversible loss of cardiomyocytes and may lead to loss of ventricular function, morbidity and mortality. Infarct size is a major prognostic factor and reduction of infarct size has therefore been an important objective of strategies to improve outcomes. In experimental studies, glucagon-like peptide 1 and exenatide, a long acting glucagon-like peptide 1 receptor agonist, a novel drug introduced for the treatment of type 2 diabetes, reduced infarct size after myocardial infarction by activating pro-survival pathways and by increasing metabolic efficiency.</p> <p>Methods</p> <p>The EXAMI trial is a multi-center, prospective, randomized, placebo controlled trial, designed to evaluate clinical outcome of exenatide infusion on top of standard treatment, in patients with an acute myocardial infarction, successfully treated with primary percutaneous coronary intervention. A total of 108 patients will be randomized to exenatide (5 μg bolus in 30 minutes followed by continuous infusion of 20 μg/24 h for 72 h) or placebo treatment. The primary end point of the study is myocardial infarct size (measured using magnetic resonance imaging with delayed enhancement at 4 months) as a percentage of the area at risk (measured using T2 weighted images at 3-7 days).</p> <p>Discussion</p> <p>If the current study demonstrates cardioprotective effects, exenatide may constitute a novel therapeutic option to reduce infarct size and preserve cardiac function in adjunction to reperfusion therapy in patients with acute myocardial infarction.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01254123">NCT01254123</a></p
    corecore