407 research outputs found

    True Performance Metrics in Electrochemical Energy Storage

    Get PDF
    A dramatic expansion of research in the area of electrochemical energy storage (EES) during the past decade has been driven by the demand for EES in handheld electronic devices, transportation, and storage of renewable energy for the power grid (1–3). However, the outstanding properties reported for new electrode materials may not necessarily be applicable to performance of electrochemical capacitors (ECs). These devices, also called supercapacitors or ultra-capacitors (4), store charge with ions from solution at charged porous electrodes. Unlike batteries, which store large amounts of energy but deliver it slowly, ECs can deliver energy faster (develop high power), but only for a short time. However, recent work has claimed energy densities for ECs approaching (5) or even exceeding that of batteries. We show that even when some metrics seem to support these claims, actual device performance may be rather mediocre. We will focus here on ECs, but these considerations also apply to lithium (Li)—ion batteries

    Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation

    Get PDF
    In this Letter, we present an in situ Raman spectroscopy study of oxidation-induced changes in the structure and composition of double-wall carbon nanotubes (DWCNTs). Above 480 °C, the intensity of the D band decreases to less than 0.01% of the G band intensity, when measured using the 780 nm laser excitation. The D band was absent from the Raman spectra recorded with the 514.5 nm excitation. Thermogravimetric analysis and high-resolution transmission electron microscopy are used to explain the observed results. We conclude that oxidation provides a purification method for the DWCNT which leads to a sample containing tubes having nearly clean surfaces without disordered carbon

    Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

    Get PDF
    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices

    Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

    Get PDF
    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices

    Where Do Batteries End and Supercapacitors Begin?

    Get PDF
    Electrochemical measurements can distinguish between different types of energy storage materials and their underlying mechanisms

    Steric effects in adsorption of ions from mixed electrolytes into microporous carbon

    Get PDF
    With the goal to improve the capacitance in electrochemical double-layer capacitors (EDLCs) many studies on pore size/ion size relationship have been undertaken to achieve a better understanding of the charge storage mechanism in the electrochemical double-layer in confinement. A significant capacitance increase was achieved by using carbon electrodes with micropores (b1 nm), when the carbon pore size was close to the ion size. In this paper, the accessibility of narrow pores is investigated by selecting a carbon with a small pore size (b0.7 nm) and electrolyte mixtures with different ion sizes. It has been shown that the adsorption capacitance limitation observed for large cations and anions could be overcome by adding ions with a smaller effective size. This result demonstrates that the pores are accessible when their size matches the effective ion size and contradicts the surface saturation assumption; effective ion size which exceeds the pore size leads to current limitation. This work confirms that the steric effect is involved when ions are adsorbed into pores and highlights the importance of controlling ion size/pore size relationship for optimisation of the capacitive performance of EDLC devices

    Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Get PDF
    Relevance: Improvements in gravimetric and volumetric capacity were realized by processes which increase pore volume, heat of adsorption and powder density. Volumetric capacity was more than doubled by rolling peels with PTFE binder and pellet pressing. Even larger gains may be achieved with bulk precursors. Approach: A suite of post-processing strategies were developed and optimized for specific precursors. Technical Accomplishments and Progress: Excess H2 adsorption over 4.3 wt.% and 0.034 kg/L was demonstrated in as-produced CDC having a moderate SSA and pore volume @ (77K, 55 atm). Max heat of H2 adsorption up to 11 kJ/mol (with average values ~ 8 kJ/mol) demonstrated. Proposed Future Research: Further science-based modification of CDC porosity, microstructure and chemistry for improved H2uptake

    Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer

    Get PDF
    Carbon supercapacitors, which are energy storage devices that use ion adsorption on the surface of highly porous materials to store charge, have numerous advantages over other power-source technologies, but could realize further gains if their electrodes were properly optimized. Studying the effect of the pore size on capacitance could potentially improve performance by maximizing the electrode surface area accessible to electrolyte ions, but until recently, no studies had addressed the lower size limit of accessible pores. Using carbide-derived carbon, we generated pores with average sizes from 0.6 to 2.25 nanometer and studied double-layer capacitance in an organic electrolyte. The results challenge the long-held axiom that pores smaller than the size of solvated electrolyte ions are incapable of contributing to charge storage
    • …
    corecore