
University of Pennsylvania
ScholarlyCommons

Energy Research Group Presentations Energy Research Group

May 2007

Carbide-Derived Carbons with Tunable Porosity
Optimized for Hydrogen Storage
John E. Fischer
University of Pennsylvania, fischer@seas.upenn.edu

Yury Gogotsi
Drexel University

Taner Yildirim
National Institute of Standards and Technology

Follow this and additional works at: http://repository.upenn.edu/pennergy_presentations

Presentation for Department of Energy: Hydrogen Storage Merit Review on May 14-17, 2007.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/pennergy_presentations/4
For more information, please contact libraryrepository@pobox.upenn.edu.

Fischer, John E.; Gogotsi, Yury; and Yildirim, Taner, "Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen
Storage" (2007). Energy Research Group Presentations. 4.
http://repository.upenn.edu/pennergy_presentations/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fpennergy_presentations%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/pennergy_presentations?utm_source=repository.upenn.edu%2Fpennergy_presentations%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/pennergy?utm_source=repository.upenn.edu%2Fpennergy_presentations%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/pennergy_presentations?utm_source=repository.upenn.edu%2Fpennergy_presentations%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/pennergy_presentations/4?utm_source=repository.upenn.edu%2Fpennergy_presentations%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/pennergy_presentations/4
mailto:libraryrepository@pobox.upenn.edu


Carbide-Derived Carbons with Tunable Porosity Optimized for
Hydrogen Storage

Abstract
Relevance: Improvements in gravimetric and volumetric capacity were realized by processes which increase
pore volume, heat of adsorption and powder density. Volumetric capacity was more than doubled by rolling
peels with PTFE binder and pellet pressing. Even larger gains may be achieved with bulk precursors.

Approach: A suite of post-processing strategies were developed and optimized for specific precursors.

Technical Accomplishments and Progress: Excess H2 adsorption over 4.3 wt.% and 0.034 kg/L was
demonstrated in as-produced CDC having a moderate SSA and pore volume @ (77K, 55 atm). Max heat of
H2 adsorption up to 11 kJ/mol (with average values ~ 8 kJ/mol) demonstrated.

Proposed Future Research: Further science-based modification of CDC porosity, microstructure and
chemistry for improved H2uptake.

Comments
Presentation for Department of Energy: Hydrogen Storage Merit Review on May 14-17, 2007.

This presentation is available at ScholarlyCommons: http://repository.upenn.edu/pennergy_presentations/4
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ObjectivesObjectives
Develop and demonstrate efficient, durable and reversible hydrogen 
storage in carbide-derived carbons (CDC) with tunable nanoporosity
(2004-2005).

Determine the optimum pore size for hydrogen storage using experiment 
and theory (2005-2006). 

Identify post-processing strategies and catalytic additives which 
maximize the performance of CDC-based hydrogen storage materials, 
using experiment and theory (2006-2007).

Finalize the design of a CDC-based H2 storage material that meets 2010 
DOE performance targets and commercialize it (2007-2008).



ApproachApproach

2 nmSiC 
Carbide porosity = 0 CDC: porosity = 57 %

May 2007: ~ 50 different CDC materials synthesized and evaluated

Create

Cl2

300  - 1200oC

“designer” pore structures in amorphous carbon by etching metals out of 
crystalline metal carbide precursors  (binary, ternary, alloys, powders, monoliths…)
using chlorine at ~ 1 atm., 300-1200C.
Optimize pore size and shape, size distribution, total volume and specific surface 
area by choice of precursor (crystal symmetry plays a role), and synthesis conditions 
(temperature, time, flow rate).
Develop post-chlorination treatments to further enhance pore volume and surface area,
and to optimize binding and release energetics for cycling at reasonable T and P.

Example: MC + (1/2)Cl2 MCl(gas) + C,           M = metal or metalloid
C = carbide-derived carbon



Status Status May 2006May 2006
Demonstrated  tuneable SSA and PSD on ~30 distinct CDCs (below left).
Proved that small pores are crucial for 1 atm storage. 
Highest SSA  > 3000 m2/g  (precursor: Ti2AlC, chlorinated at 800°C).
Heats of adsorption > carbon nanotubes, MOFs (below center).
Highest gravimetric excess capacity 4.2% for NH3–annealed TiC-CDC at 
77K, 55 atm (below right).
Initiated post-processing studies to achieve DOE targets with CDC.
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Technical AccomplishmentsTechnical Accomplishments
2006 2006 -- 20072007

Purification – remove elements blocking access to pores 
and/or plugging the pores – hydrogen vs. NH3.
Activation – increase SSA by removing loosely bound 
carbon – motivated and guided by extensive literature on 
activated carbons.
Chemical modification of pore (interior) surfaces to 
increase ΔH.
Doping to increase ΔH:  3-center orbital overlaps (H, C, 
M); Kubas interaction.
Improve volumetric capacity by compressing CDC 
powders.
Nanoscale precursor carbides – chlorine reactions with 
undercoordinated metals/metalloids? More uniform 
product? Faster kinetics?
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purificationpurification

0 200 400 600 800
0.00

0.05

0.4

0.5

0.6

0.7

TiC CDC @ 600 oC

90 min, H2

90 min, NH3

po
re

 V
ol

um
e,

 c
c/

g

temperature (oC)

Hydrogen and ammonia post-treatments of CDC

Chlorination leaves behind significant metals, chlorine,  chlorides, …
These can be removed by annealing in flowing H2 or NH3.
Optimized annealing protocol combined with chlorination synthesis 
into a unified in-line process.
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COCO22 activationactivation
We obtained promising results with CO2 activation of SiC-derived CDC.  
Process optimized w.r.t. temperature, time and flowrate: 900C, 2 hr, 25 ccm.
BET SSA increases 65% from 1424 to 2356 m2/gram.
DFT pore volume increases 88% from 0.52 to 0.98 cc/gram.
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surface chemical modification:surface chemical modification:
clues for CDC from clues for CDC from nanodiamondnanodiamond studiesstudies
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increase increase ΔΔHH by doping: Li by doping: Li 
Prompt Gamma-Ray Activation    

Analysis (PGAA) Excess Adsorption Isotherms

Li-doped TiC CDC

Control TiC CDC
1.6 wt. %

Challenges: uniform doping, avoid oxidation, and avoid blocking 
pores with Li clusters.
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First, we need to develop new CDC with large pores and pore volume for in situ
decomposition of Ti compounds - Mo2C-CDC @ 660°C; H2-annealed at 600°C.; .
Even without doping, excess gravimetric capacity 4.2 wt% at 77K, P > 30 atm.
TEM shows Ti-containing nanocrystals on the surface of Mo2C-CDC particles.
TGA in air: 7 wt% ash @ 1000C, identified as TiO2 by XRD           1.1 at% Ti.
Preliminary Sieverts isotherms promising for enhanced ΔH.

doping with Tidoping with Ti
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improving the volumetric improving the volumetric 
capacity of CDC powderscapacity of CDC powders
Rolling peels with PTFE binder, similar          

to Li ion battery electrodes. 

Volumetric capacity increases by up to 
100%, with 10-30% loss of gravimetric 
capacity which can be reduced by 
minimizing PTFE content.  Need to 
correlate  densification results with other 
properties.

Density can be further increased by 
pressing stacks of peel disks into pellets. 
Correlate kinetics with densification.

Advantages of powder can still be 
exploited, such as ease of uniform 
chlorination and chemical treatments.

We will study an alternative – large 
stackable CDC particles, e.g.  few mm 
cubes. 0 10 20 30 40 50 60
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a challenge: modeling the          a challenge: modeling the          
pores in amorphous carbonpores in amorphous carbon

Ab initio?  Presently impossible to build a practicable 
structural model for top-down approaches; no periodicity. 

Independent slit pores?  There is no experimental evidence 
for a significant volume fraction of interlayer correlations in 
H2-optimized CDC.  Furthermore, ΔH at low coverage ~ 2-
3 times greater than calculated for slit pores.

“Bottom-up” strategy:  CDC comprised of sp2 carbons 
(XANES, radial distribution function) connected in rings 
(reverse Monte Carlo), similar to 1970’s models of α-Si. 
Ring statistics specify the local atomic structure out to 3-4 
neighbors.

Simple surrogate – ethylene, including doped molecules 
such as C2H4(TiH2)2 to which 5 H2’s bind with 0.45 eV.
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Relevance:   Improvements in gravimetric and volumetric capacity  were realized by 
processes which increase pore volume, heat of adsorption and powder density.  
Volumetric capacity was more than doubled by rolling peels with PTFE binder and 
pellet pressing.  Even larger gains may be achieved with bulk precursors.

Approach: A suite of post-processing strategies were developed and optimized for 
specific precursors. 

Technical Accomplishments and Progress: Excess H2 adsorption over 4.3 wt.% 
and 0.034 kg/L was demonstrated in as-produced CDC having a moderate SSA and 
pore volume @ (77K, 55 atm). Max heat of H2 adsorption up to 11 kJ/mol (with 
average values ~ 8 kJ/mol) demonstrated. 

Proposed Future Research: Further science-based modification of CDC porosity, 
microstructure and chemistry for improved H2 uptake. 

Project SummaryProject Summary

Prof. John E. Fischer
fischer@seas.upenn.edu

(215) 898-6924

mailto:fischer@seas.upenn.edu
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