923 research outputs found

    Violation of the Leggett-Garg inequality with weak measurements of photons

    Get PDF
    By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements, and the violation of realism and non-intrusiveness of measurements. A quantitative formulation of the latter concept is expressed in terms of a Leggett-Garg inequality for the outcomes of subsequent measurements of an individual quantum system. We experimentally violate the Leggett-Garg inequality for several measurement strengths. Furthermore, we experimentally demonstrate that there is a one-to-one correlation between achieving strange weak values and violating the Leggett-Garg inequality.Comment: 5 pages, 4 figure

    Challenging Perceptions of Disability through Performance Poetry Methods: The "Seen but Seldom Heard" Project.

    Get PDF
    This paper considers performance poetry as a method to explore lived experiences of disability. We discuss how poetic inquiry used within a participatory arts-based research framework can enable young people to collectively question society’s attitudes and actions towards disability. Poetry will be considered as a means to develop a more accessible and effective arena in which young people with direct experience of disability can be empowered to develop new skills that enable them to tell their own stories. Discussion of how this can challenge audiences to critically reflect upon their own perceptions of disability will also be developed

    Universal analytic properties of noise. Introducing the J-Matrix formalism

    Full text link
    We propose a new method in the spectral analysis of noisy time-series data for damped oscillators. From the Jacobi three terms recursive relation for the denominators of the Pad\'e Approximations built on the well-known Z-transform of an infinite time-series, we build an Hilbert space operator, a J-Operator, where each bound state (inside the unit circle in the complex plane) is simply associated to one damped oscillator while the continuous spectrum of the J-Operator, which lies on the unit circle itself, is shown to represent the noise. Signal and noise are thus clearly separated in the complex plane. For a finite time series of length 2N, the J-operator is replaced by a finite order J-Matrix J_N, having N eigenvalues which are time reversal covariant. Different classes of input noise, such as blank (white and uniform), Gaussian and pink, are discussed in detail, the J-Matrix formalism allowing us to efficiently calculate hundreds of poles of the Z-transform. Evidence of a universal behaviour in the final statistical distribution of the associated poles and zeros of the Z-transform is shown. In particular the poles and zeros tend, when the length of the time series goes to infinity, to a uniform angular distribution on the unit circle. Therefore at finite order, the roots of unity in the complex plane appear to be noise attractors. We show that the Z-transform presents the exceptional feature of allowing lossless undersampling and how to make use of this property. A few basic examples are given to suggest the power of the proposed method.Comment: 14 pages, 8 figure

    Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background

    Get PDF
    We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to the likelihood of it being a noise fluctuation provides optimal ranking for the candidate events found in an experiment. The likelihood-ratio ranking allows us to combine different kinds of data into a single analysis. We apply the general framework to the problem of unifying the results of independent experiments and the problem of accounting for non-Gaussian artifacts in the searches for gravitational waves from compact binary coalescence in LIGO data. We show analytically and confirm through simulations that in both cases the likelihood ratio statistic results in an improved analysis.Comment: 10 pages, 6 figure

    A burst search for gravitational waves from binary black holes

    Full text link
    Compact binary coalescence (CBC) is one of the most promising sources of gravitational waves. These sources are usually searched for with matched filters which require accurate calculation of the GW waveforms and generation of large template banks. We present a complementary search technique based on algorithms used in un-modeled searches. Initially designed for detection of un-modeled bursts, which can span a very large set of waveform morphologies, the search algorithm presented here is constrained for targeted detection of the smaller subset of CBC signals. The constraint is based on the assumption of elliptical polarisation for signals received at the detector. We expect that the algorithm is sensitive to CBC signals in a wide range of masses, mass ratios, and spin parameters. In preparation for the analysis of data from the fifth LIGO-Virgo science run (S5), we performed preliminary studies of the algorithm on test data. We present the sensitivity of the search to different types of simulated CBC waveforms. Also, we discuss how to extend the results of the test run into a search over all of the current LIGO-Virgo data set.Comment: 12 pages, 4 figures, 2 tables, submitted for publication in CQG in the special issue for the conference proceedings of GWDAW13; corrected some typos, addressed some minor reviewer comments one section restructured and references updated and correcte

    Weak measurement of photon polarization by back-action induced path interference

    Full text link
    The essential feature of weak measurements on quantum systems is the reduction of measurement back-action to negligible levels. To observe the non-classical features of weak measurements, it is therefore more important to avoid additional back-action errors than it is to avoid errors in the actual measurement outcome. In this paper, it is shown how an optical weak measurement of diagonal (PM) polarization can be realized by path interference between the horizontal (H) and vertical (V) polarization components of the input beam. The measurement strength can then be controlled by rotating the H and V polarizations towards each other. This well-controlled operation effectively generates the back-action without additional decoherence, while the visibility of the interference between the two beams only limits the measurement resolution. As the experimental results confirm, we can obtain extremely high weak values, even at rather low visibilities. Our method therefore provides a realization of weak measurements that is extremely robust against experimental imperfections.Comment: 11 pages, 3 figure

    Phenomenological template family for black-hole coalescence waveforms

    Full text link
    Recent progress in numerical relativity has enabled us to model the non-perturbative merger phase of the binary black-hole coalescence problem. Based on these results, we propose a phenomenological family of waveforms which can model the inspiral, merger, and ring-down stages of black hole coalescence. We also construct a template bank using this family of waveforms and discuss its implementation in the search for signatures of gravitational waves produced by black-hole coalescences in the data of ground-based interferometers. This template bank might enable us to extend the present inspiral searches to higher-mass binary black-hole systems, i.e., systems with total mass greater than about 80 solar masses, thereby increasing the reach of the current generation of ground-based detectors.Comment: Minor changes, Submitted to Class. Quantum Grav. (Proc. GWDAW11

    Herbicide-resistant weeds : from research and knowledge to future needs

    Get PDF
    Synthetic herbicides have been used globally to control weeds in major field crops. This has imposed a strong selection for any trait that enables plant populations to survive and reproduce in the presence of the herbicide. Herbicide resistance in weeds must be minimized because it is a major limiting factor to food security in global agriculture. This represents a huge challenge that will require great research efforts to develop control strategies as alternatives to the dominant and almost exclusive practice of weed control by herbicides. Weed scientists, plant ecologists and evolutionary biologists should join forces and work towards an improved and more integrated understanding of resistance across all scales. This approach will likely facilitate the design of innovative solutions to the global herbicide resistance challenge

    Status of NINJA: the Numerical INJection Analysis project

    Get PDF
    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise

    Upper Limits on a Stochastic Background of Gravitational Waves

    Get PDF
    The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Ω_0<8.4×10^(-4) in the 69–156 Hz band is ~10^5 times lower than the previous result in this frequency range
    corecore