79 research outputs found

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200

    New limits on heavy sterile neutrino mixing in 8B{^{8}\rm{B}}-decay obtained with the Borexino detector

    Full text link
    If heavy neutrinos with mass mÎœH≄m_{\nu_{H}}\geq2me m_e are produced in the Sun via the decay 8B→8Be+e++ÎœH{^8\rm{B}} \rightarrow {^8\rm{Be}} + e^+ + \nu_H in a side branch of pp-chain, they would undergo the observable decay into an electron, a positron and a light neutrino ÎœH→ΜL+e++e−\nu_{H}\rightarrow\nu_{L}+e^++e^-. In the present work Borexino data are used to set a bound on the existence of such decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV ≀mÎœH≀\leq m_{\nu_{H}} \le 14 MeV to be ∣UeH∣2≀(10−3−4×10−6)|U_{eH}|^2\leq (10^{-3}-4\times10^{-6}) respectively. These are tighter limits on the mixing parameters than obtained in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure

    Tobacco industry globalization and global health governance: : towards an interdisciplinary research agenda

    Get PDF
    Shifting patterns of tobacco production and consumption, and the resultant disease burden worldwide since the late twentieth century prompted efforts to strengthen global health governance through adoption of the Framework Convention on Tobacco Control. While the treaty is rightfully considered an important achievement, to address a neglected public health issue through collective action, evidence suggests that tobacco industry globalization continues apace. In this article we provide a systematic review of the public health literature and reveal definitional and measurement imprecision, ahistorical timeframes, transnational tobacco companies and the state as the primary units and levels of analysis, and a strong emphasis on agency as opposed to structural power. Drawing on the study of globalization in international political economy and business studies, we identify opportunities to expand analysis along each of these dimensions. We conclude that this expanded and interdisciplinary research agenda provides the potential for fuller understanding of the dual and dynamic relationship between the tobacco industry and globalization. Deeper analysis of how the industry has adapted to globalization over time, as well as how the industry has influenced the nature and trajectory of globalization, is essential for building effective global governance responses

    Precision muon reconstruction in Double Chooz

    Get PDF
    We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of the liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz. © 2014 Elsevier B.V

    Signal enhancement in protein NMR using the spin-noise tuning optimum

    Get PDF
    We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the optimal tuning condition, which may be offset by several 100 kHz from the conventional tuning settings using the noise response of the water protons as an indicator. Although the radio frequency-pulse durations are typically longer under such conditions, signal-to-noise gains of up to 22% were achieved. At salt concentrations up to 100 mM a substantial sensitivity gain was observed

    The Borexino experiment: Recent results and future plans

    Get PDF
    The Borexino experiment (located at Laboratori Nazionali del Gran Sasso) is the most radiopure liquid scintillator neutrino detector allover the world. Starting from 2007, the Borexino experiment provided a precision measurement of 7Be solar neutrino flux (including also a detailed day/night modulation analysis), and gave the first detection of pep neutrinos, a detection of the 8B neutrinos at low energy threshold (3 MeV) and an important contribution to the geo-neutrino physics. The forthcoming program includes an improvement of the solar neutrino and geo-neutrino detection and an important project focused on the sterile neutrino search (SOX)

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010
    • 

    corecore