53 research outputs found

    Oscillating Evolution of a Mammalian Locus with Overlapping Reading Frames: An XLαs/ALEX Relay

    Get PDF
    XLαs and ALEX are structurally unrelated mammalian proteins translated from alternative overlapping reading frames of a single transcript. Not only are they encoded by the same locus, but a specific XLαs/ALEX interaction is essential for G-protein signaling in neuroendocrine cells. A disruption of this interaction leads to abnormal human phenotypes, including mental retardation and growth deficiency. The region of overlap between the two reading frames evolves at a remarkable speed: the divergence between human and mouse ALEX polypeptides makes them virtually unalignable. To trace the evolution of this puzzling locus, we sequenced it in apes, Old World monkeys, and a New World monkey. We show that the overlap between the two reading frames and the physical interaction between the two proteins force the locus to evolve in an unprecedented way. Namely, to maintain two overlapping protein-coding regions the locus is forced to have high GC content, which significantly elevates its intrinsic evolutionary rate. However, the two encoded proteins cannot afford to change too quickly relative to each other as this may impair their interaction and lead to severe physiological consequences. As a result XLαs and ALEX evolve in an oscillating fashion constantly balancing the rates of amino acid replacements. This is the first example of a rapidly evolving locus encoding interacting proteins via overlapping reading frames, with a possible link to the origin of species-specific neurological differences

    Mutation Patterns in the Human Genome: More Variable Than Expected

    Get PDF
    Why are some genomic positions more mutable than others? The identification of cryptic mutation hotspots in the human genome indicates that the determinants of mutation rates are more complex than anticipated

    Evidence That Replication-Associated Mutation Alone Does Not Explain Between-Chromosome Differences In Substitution Rates

    Get PDF
    Since Haldane first noticed an excess of paternally derived mutations, it has been considered that most mutations derive from errors during germ line replication. Miyata et al. (1987) proposed that differences in the rate of neutral evolution on X, Y, and autosome can be employed to measure the extent of this male bias. This commonly applied method assumes replication to be the sole source of between-chromosome variation in substitution rates. We propose a simple test of this assumption: If true, estimates of the male bias should be independent of which two chromosomal classes are compared. Prior evidence from rodents suggested that this might not be true, but conclusions were limited by a lack of rat Y-linked sequence. We therefore sequenced two rat Y-linked bacterial artificial chromosomes and determined evolutionary rate by comparison with mouse. For estimation of rates we consider both introns and synonymous rates. Surprisingly, for both data sets the prediction of congruent estimates of α is strongly rejected. Indeed, some comparisons suggest a female bias with autosomes evolving faster than Y-linked sequence. We conclude that the method of Miyata et al. (1987) has the potential to provide incorrect estimates. Correcting the method requires understanding of the other causes of substitution that might differ between chromosomal classes. One possible cause is recombination-associated substitution bias for which we find some evidence. We note that if, as some suggest, this association is dominantly owing to male recombination, the high estimates of α seen in birds is to be expected as Z chromosomes recombine in males

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution

    Composition and Localization of Treponema denticola Outer Membrane Complexes ▿

    No full text
    The Treponema denticola outer membrane lipoprotein-protease complex (dentilisin) contributes to periodontal disease by degrading extracellular matrix components and disrupting intercellular host signaling pathways. We recently demonstrated that prcB, located upstream of and cotranscribed with prcA and prtP, encodes a 22-kDa lipoprotein that interacts with PrtP and is required for its activity. Here we further characterize products of the protease locus and their roles in expression, formation, and localization of outer membrane complexes. PrcB migrates in native gels as part of a >400-kDa complex that includes PrtP and PrcA, as well as the major outer sheath protein Msp. PrcB is detectable as a minor constituent of the purified active protease complex, which was previously reported to consist of only PrtP and auxiliary polypeptides PrcA1 and PrcA2. Though it lacks the canonical ribosome binding site present upstream of both prcA and prtP, PrcB is present at levels similar to those of PrtP in whole-cell extracts. Immunofluorescence microscopy demonstrated cell surface exposure of the mature forms of PrtP, PrcA1, PrcB, and Msp. The 16-kDa N-terminal acylated fragment of PrtP (predicted to be released during activation of PrtP) was present in cell extracts but was detected neither in the purified active protease complex nor on the cell surface. PrcA2, detectable on the surface of Msp-deficient cells but not that of wild-type cells, coimmunoprecipitated with Msp. Our results indicate that PrcB is a component of the outer membrane lipoprotein protease complex and that Msp and PrcA2 interaction may mediate formation of a very-high-molecular-weight outer membrane complex
    • 

    corecore