70 research outputs found

    Isotope dilution analysis for particle mass determination using single-particle inductively coupled plasma time-of-flight mass spectrometry: application to size determination of silver nanoparticles

    Get PDF
    This paper describes methodology based on the application of isotope dilution (ID) in single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-ToFMS) mode for the mass determination (and sizing) of silver nanoparticles (AgNPs). For this purpose, and considering that the analytical signal in spICP-MS shows a transient nature, an isotope dilution equation used for online work was adapted and used for the mass determination of individual NPs. The method proposed measures NP isotope ratios in a particle-to-particle approach, which allows for the characterization of NP mass (and size) distributions and not only the mean size of the distribution. For the best results to be obtained, our method development (undertaken through the analysis of the reference material NIST RM 8017) included the optimization of the working conditions for the best precision and accuracy in isotope ratios of individual NPs, which had been only reported to date with multicollector instruments. It is shown that the precision of the measurement of these ratios is limited by the magnitude of the signals obtained for each NP in the mass analyzer (counting statistics). However, the uncertainty obtained for the sizing of NPs in this approach can be improved by careful method optimization, where the most important parameters are shown to be the selection of the spike isotopic composition and concentration. Although only AgNPs were targeted in this study, the method presented, with the corresponding adaptations, could be applied to NPs of any other composition that include an element with different naturally available isotopes

    Analysis of mono-phosphate nucleotides as a potential method for quantification of DNA using high performance liquid chromatography-inductively coupled plasma-mass spectrometry

    Get PDF
    The determination of total deoxyribonucleic acid (DNA) concentration is of great importance in many biological and bio-medical analyses. The quantification of DNA is traditionally performed by UV spectroscopy; however the results can be affected greatly by the sample matrix. The proposed method quantifies phosphorus in digested calf thymus DNA and human DNA by high performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICP-MS). The method presented showed excellent baseline separation between all 4 DNA mono-nucleotides and 5’UMP. Column recoveries ranging from 95% to 99% for phosphorus resulted in a mass balance of 95% ± 0.5% for standard nucleotides, determined by LC-ICP-MS, compared to total DNA determined by flow injection coupled to ICP-MS (FI-ICP-MS). The ability of LC-ICPMS to act as an internal check that only DNA derived phosphorus was counted in the assay was demonstrated by establishing a mass balance between the total phosphorous signal from undigested DNA and that from the speciated DNA. The method for quantification was evaluated by analysis of NIST SRM 2372; a total speciated DNA recovery of 52.1 ng/ÎŒL, compared with an expected value of 53.6 ng/ÎŒL, was determined by external calibration. From repeat measurements a mass balance of 97% ± 0.5% for NIST DNA was achieved. The method limits of detection for individual nucleotides were determined between 0.8 to 1.7 ÎŒg L-1 (31P) for individual nucleotides by LC-ICP-MS, and 360 ng L-1 for 5’AMP by direct nebulisation

    Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs

    Get PDF
    A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles (29Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate (29Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride (29SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive 29SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. 29Si-TEOS was obtained by treating 29SiCl4 with absolute ethanol. Structural characterisation of 29Si-TEOS was performed by using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated

    Accurate quantification of selenoproteins in human plasma/serum by isotope dilution ICP-MS : focus on selenoprotein P

    Get PDF
    Acknowledgements The research leading to these results was funded by the EMRP Joint Research Project “Metrology for metalloproteins” (HLT-05 2012). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.Peer reviewedPostprin

    A comparison of techniques for size measurement of nanoparticles in cell culture medium

    Get PDF
    Plain and aminated silica nanoparticles dispersed in purified water, in 50 mM Tris-HCl buffer and in cell culture medium were measured using dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), small-angle X-ray scattering (SAXS), and particle tracking analysis (PTA). The test samples were measured by all methods immediately after dispersion and after incubation at room temperature for 24 h. The effect of the biological dispersion medium on the modal value of the particle size distribution was compared for each method taking into account the estimated uncertainty. For the methods based on light scattering, DLS and PTA, the size distributions obtained were significantly altered due to the formation of a protein corona and induced agglomeration effects. With SAXS and CLS, the measured size of the primary particles was mostly unchanged. While SAXS offers excellent precision and traceability to the SI unit system if the model fitting approach is used for data analysis, CLS provides detailed size distributions from which additional information on the agglomeration state can be deduced

    Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness

    Get PDF
    Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particlesâ€Č morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia

    Glossary of methods and terms used in analytical spectroscopy (IUPAC Recommendations 2019)

    Get PDF
    Recommendations are given concerning the terminology of concepts and methods used in spectroscopy in analytical chemistry, covering nuclear magnetic resonance spectroscopy, atomic spectroscopy, and vibrational spectroscopy

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
    • 

    corecore