119 research outputs found

    HIV Immunotherapy: Host Immunity and Virus Evolution

    Get PDF
    __Abstract__ HIV-1 infection poses a major challenge to global public health. In spite of its huge clinical benefits, combined antiretroviral therapy fails to eradicate the virus from the body. Therefore, in the absence of a safe and effective preventive vaccine, HIV-specific cytotoxic T cell inducing therapeutic vaccination, aimed at limiting viral replication, presents a promising alternative strategy to contain the HIV-1 pandemic. The research described in this thesis studied the effects of HIV immunotherapy on the host immunity and on evolution of HIV. Dendritic cell (DC)-based immunotherapy against HIV-1 was evaluated in a clinical trial in which 17 HIV-1 infected patients were vaccinated with autologous DCs electroporated with mRNA of the HIV proteins Tat, Rev and Nef (DC-TRN) and subsequently interrupted antiretroviral treatment. We have demonstrated that DC-TRN is safe and induces in most patients HIV-specific T-cell responses. DC-TRN vaccination did not have a detectable impact on the virus sequence evolution in whole genes and CD8+ T-cell epitopes. However, it had a profound effect on the gene expression profile of the peripheral blood compartment. In order to optimize immunogen delivery, we have evaluated the immunogenicity of a replication-deficient recombinant influenza viral vector and an antigen-expressing immune-stimulatory liposomal non-viral vector. Both vectors were demonstrated to induce antibody formation and cytotoxic T cells. Our research has contributed to a better understanding of the immunogenic potential of viral vector systems and to the impact of a DC-based therapeutic vaccine on host immunity and virus evolution

    Lysophosphatidic Acid-Activated Calcium Signaling Is Elevated in Red Cells from Sickle Cell Disease Patients

    Get PDF
    (1) Background: It is known that sickle cells contain a higher amount of Ca2+ compared to healthy red blood cells (RBCs). The increased Ca2+ is associated with the most severe symptom of sickle cell disease (SCD), the vaso-occlusive crisis (VOC). The Ca2+ entry pathway received the name of Psickle but its molecular identity remains only partly resolved. We aimed to map the involved Ca2+ signaling to provide putative pharmacological targets for treatment. (2) Methods: The main technique applied was Ca2+ imaging of RBCs from healthy donors, SCD patients and a number of transgenic mouse models in comparison to wild-type mice. Life-cell Ca2+ imaging was applied to monitor responses to pharmacological targeting of the elements of signaling cascades. Infection as a trigger of VOC was imitated by stimulation of RBCs with lysophosphatidic acid (LPA). These measurements were complemented with biochemical assays. (3) Results: Ca2+ entry into SCD RBCs in response to LPA stimulation exceeded that of healthy donors. LPA receptor 4 levels were increased in SCD RBCs. Their activation was followed by the activation of Gi protein, which in turn triggered opening of TRPC6 and CaV2.1 channels via a protein kinase Cα and a MAP kinase pathway, respectively. (4) Conclusions: We found a new Ca2+ signaling cascade that is increased in SCD patients and identified new pharmacological targets that might be promising in addressing the most severe symptom of SCD, the VOC

    Insufficient serum caspofungin levels in a paediatric patient on ECMO

    Get PDF
    Caspofungin, aechinocandin, is a relatively new lipophilic antifungal drug. Little is known concerning the pharmacokinetics of caspofungin in children. Extracorporeal membrane oxygenation (ECMO) allows prolonged cardiopulmonary support in patients with life-threatening respiratory or cardiac failure. Pharmacokinetics may be altered by ECMO. We describe the case of a paediatric patient on ECMO with severe pneumonia and sepsis, who had subtherapeutic exposure of caspofungin despite normal to high dosages of caspofungin. Therapeutic drug monitoring is warranted

    Hemoglobin is an oxygen-dependent glutathione buffer adapting the intracellular reduced glutathione levels to oxygen availability

    Full text link
    Fast changes in environmental oxygen availability translate into shifts in mitochondrial free radical production. An increase in intraerythrocytic reduced glutathione (GSH) during deoxygenation would support the detoxification of exogenous oxidants released into the circulation from hypoxic peripheral tissues. Although reported, the mechanism behind this acute oxygen-dependent regulation of GSH in red blood cells remains unknown. This study explores the role of hemoglobin (Hb) in the oxygen-dependent modulation of GSH levels in red blood cells. We have demonstrated that a decrease in Hb O2 saturation to 50% or less observed in healthy humans while at high altitude, or in red blood cell suspensions results in rising of the intraerythrocytic GSH level that is proportional to the reduction in Hb O2 saturation. This effect was not caused by the stimulation of GSH de novo synthesis or its release during deglutathionylation of Hb's cysteines. Using isothermal titration calorimetry and in silico modeling, we observed the non-covalent binding of four molecules of GSH to oxy-Hb and the release of two of them upon deoxygenation. Localization of the GSH binding sites within the Hb molecule was identified. Oxygen-dependent binding of GSH to oxy-Hb and its release upon deoxygenation occurred reciprocally to the binding and release of 2,3-bisphosphoglycerate. Furthermore, noncovalent binding of GSH to Hb moderately increased Hb oxygen affinity. Taken together, our findings have identified an adaptive mechanism by which red blood cells may provide an advanced antioxidant defense to respond to oxidative challenges immediately upon deoxygenation

    GA101 (obinutuzumab) monocLonal Antibody as Consolidation Therapy In CLL (GALACTIC) trial: study protocol for a phase II/III randomised controlled trial

    Get PDF
    Background: Chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia. Achieving minimal residual disease (MRD) negativity in CLL is an independent predictor of survival even with a variety of different treatment approaches and regardless of the line of therapy. Methods/design: GA101 (obinutuzumab) monocLonal Antibody as Consolidation Therapy In CLL (GALACTIC) is a seamless phase II/III, multi-centre, randomised, controlled, open, parallel-group trial for patients with CLL who have recently responded to chemotherapy. Participants will be randomised to receive either obinutuzumab (GA-101) consolidation or no treatment (as is standard). The phase II trial will assess safety and short-term efficacy in order to advise on continuation to a phase III trial. The primary objective for phase III is to assess the effect of consolidation therapy on progression-free survival (PFS). One hundred eighty-eight participants are planned to be recruited from forty research centres in the United Kingdom. Discussion: There is evidence that achieving MRD eradication with alemtuzumab consolidation is associated with improvements in survival and time to progression. This trial will assess whether obinutuzumab is safe in a consolidation setting and effective at eradicating MRD and improving PFS. Trial registration: ISRCTN, 64035629. Registered on 12 January 2015. EudraCT, 2014-000880-42. Registered on 12 November 2014

    Quantifying the profile and progression of impairments, activity, participation, and quality of life in people with Parkinson disease : protocol for a prospective cohort study

    Get PDF
    Background Despite the finding that Parkinson disease (PD) occurs in more than one in every 1000 people older than 60 years, there have been few attempts to quantify how deficits in impairments, activity, participation, and quality of life progress in this debilitating condition. It is unclear which tools are most appropriate for measuring change over time in PD. Methods and design This protocol describes a prospective analysis of changes in impairments, activity, participation, and quality of life over a 12 month period together with an economic analysis of costs associated with PD. One-hundred participants will be included, provided they have idiopathic PD rated I-IV on the modified Hoehn & Yahr (1967) scale and fulfil the inclusion criteria. The study aims to determine which clinical and economic measures best quantify the natural history and progression of PD in a sample of people receiving services from the Victorian Comprehensive Parkinson\u27s Program, Australia. When the data become available, the results will be expressed as baseline scores and changes over 3 months and 12 months for impairment, activity, participation, and quality of life together with a cost analysis. Discussion This study has the potential to identify baseline characteristics of PD for different Hoehn & Yahr stages, to determine the influence of disease duration on performance, and to calculate the costs associated with idiopathic PD. Valid clinical and economic measures for quantifying the natural history and progression of PD will also be identified

    An epigenetic clock for gestational age at birth based on blood methylation data

    Get PDF

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    • …
    corecore