147 research outputs found

    Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data

    Get PDF
    We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination

    Internal delensing of cosmic microwave background polarization B-Modes with the POLARBEAR experiment

    Get PDF
    International audienceUsing only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments

    Search for a new gauge boson in the AA' Experiment (APEX)

    Get PDF
    We present a search at Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak coupling α\alpha' to electrons. Such a particle AA' can be produced in electron-nucleus fixed-target scattering and then decay to an e+ee^+e^- pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run data, we searched in the mass range 175--250 MeV, found no evidence for an Ae+eA'\to e^+e^- reaction, and set an upper limit of α/α106\alpha'/\alpha \simeq 10^{-6}. Our findings demonstrate that fixed-target searches can explore a new, wide, and important range of masses and couplings for sub-GeV forces.Comment: 5 pages, 5 figures, references adde

    Development and characterization of the readout system for POLARBEAR-2

    Full text link
    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Published in Proceedings of SPIE Volume 915

    Measurements of tropospheric ice clouds with a ground-based CMB polarization experiment, POLARBEAR

    Get PDF
    The polarization of the atmosphere has been a long-standing concern for ground-based experiments targeting cosmic microwave background (CMB) polarization. Ice crystals in upper tropospheric clouds scatter thermal radiation from the ground and produce a horizontally polarized signal. We report a detailed analysis of the cloud signal using a ground-based CMB experiment, Polarbear, located at the Atacama desert in Chile and observing at 150 GHz. We observe horizontally polarized temporal increases of low-frequency fluctuations ("polarized bursts," hereafter) of 720.1 K when clouds appear in a webcam monitoring the telescope and the sky. The hypothesis of no correlation between polarized bursts and clouds is rejected with >24\u3c3 statistical significance using three years of data. We consider many other possibilities including instrumental and environmental effects, and find no reasons other than clouds that can explain the data better. We also discuss the impact of the cloud polarization on future ground-based CMB polarization experiments

    Optimal CMB Lensing Reconstruction and Parameter Estimation with SPTpol Data

    Full text link
    We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg2^2 of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μ\muK-arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly sub-optimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be Aϕ=0.949±0.122A_\phi\,{=}\,0.949\,{\pm}\,0.122 using the Bayesian pipeline, consistent with our QE pipeline result, but with 17\% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist "bias hardening," and reducing the systematic uncertainty on AϕA_\phi due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain AϕA_\phi along with ALA_{\rm L}, the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easily infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on AϕA_\phi and 7 times lower effective lensing reconstruction noise.Comment: 27 pages, 14 figures, accompanying software package available at https://cosmicmar.com/CMBLensing.j

    The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status

    Full text link
    We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simon Array (SA), which is an array of three cosmic microwave background (CMB) polarization sensitive telescopes located at the POLARBEAR (PB) site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 di-chroic optical pixels each of which have four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) and uses a silicon oxide (SiOx) for the transmission lines and cross-over process for orthogonal polarizations. The second we call Version 13 (V13) and uses silicon nitride (SiNx) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6% respectively. The V11 arrays had a superconducting transition temperature (Tc) of 452 +/- 15 mK, a normal resistance (Rn) of 1.25 +/- 0.20 Ohms, and saturations powers of 5.2 +/- 1.0 pW and 13 +/- 1.2 pW for the 90 and 150 GHz bands respectively. The V13 arrays had a superconducting transition temperature (Tc) of 456 +/-6 mK, a normal resistance (Rn) of 1.1 +/- 0.2 Ohms, and saturations powers of 10.8 +/- 1.8 pW and 22.9 +/- 2.6 pW for the 90 and 150 GHz bands respectively

    Cross-correlation of CMB polarization lensing with High-z submillimeter Herschel-ATLAS galaxies

    Get PDF
    We report a 4.8σ measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the Polarbear experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind

    Modeling Atmospheric Emission for CMB Ground-based Observations

    Get PDF
    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations

    A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set

    Full text link
    We present a sample-variance-limited measurement of the temperature power spectrum (TTTT) of the cosmic microwave background (CMB) using observations of a  ⁣1500deg2\sim\! 1500 \,\mathrm{deg}^2 field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range 750<3000750 \leq \ell < 3000. We combine this TTTT measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 TT/TE/EETT/TE/EE data set. This is the first analysis to present cosmological constraints from SPT TTTT, TETE, and EEEE power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for Λ\LambdaCDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra ALA_\mathrm{L}, the effective number of neutrino species NeffN_{\mathrm{eff}}, the primordial helium abundance YPY_{\mathrm{P}}, and the baryon clumping factor due to primordial magnetic fields bb. We find that the SPT-3G 2018 T/TE/EET/TE/EE data are well fit by Λ\LambdaCDM with a probability-to-exceed of 15%15\%. For Λ\LambdaCDM, we constrain the expansion rate today to H0=68.3±1.5kms1Mpc1H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} and the combined structure growth parameter to S8=0.797±0.042S_8 = 0.797 \pm 0.042. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within <1σ<1\,\sigma of each other. (abridged)Comment: 35 Pages, 17 Figures, 11 Table
    corecore