187 research outputs found
Faddeev Calculations of Proton-Deuteron Radiative Capture with Exchange Currents
pd capture processes at various energies have been analyzed based on
solutions of 3N-Faddeev equations and using modern NN forces. The application
of the Siegert theorem is compared to the explicit use of - and
-like exchange currents connected to the AV18 NN interaction. Overall
good agreement with cross sections and spin observables has been obtained but
leaving room for improvement in some cases. Feasibility studies for 3NF's
consistently included in the 3N continuum and the 3N bound state have been
performed as well.Comment: Minor changes in notation, ps files for figure
Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data
We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination
Development and characterization of the readout system for POLARBEAR-2
POLARBEAR-2 is a next-generation receiver for precision measurements of the
polarization of the cosmic microwave background (Cosmic Microwave Background
(CMB)). Scheduled to deploy in early 2015, it will observe alongside the
existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro
Toco in the Atacama desert of Chile. For increased sensitivity, it will feature
a larger area focal plane, with a total of 7,588 polarization sensitive
antenna-coupled Transition Edge Sensor (TES) bolometers, with a design
sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin,
and the bolometers will be read-out with 40x frequency domain multiplexing,
with 36 optical bolometers on a single SQUID amplifier, along with 2 dark
bolometers and 2 calibration resistors. To increase the multiplexing factor
from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth
for SQUID readout and well-defined frequency channel spacing. Extending to
these higher frequencies requires new components and design for the LC filters
which define channel spacing. The LC filters are cold resonant circuits with an
inductor and capacitor in series with each bolometer, and stray inductance in
the wiring and equivalent series resistance from the capacitors can affect
bolometer operation. We present results from characterizing these new readout
components. Integration of the readout system is being done first on a small
scale, to ensure that the readout system does not affect bolometer sensitivity
or stability, and to validate the overall system before expansion into the full
receiver. We present the status of readout integration, and the initial results
and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for
Astronomy VII. Published in Proceedings of SPIE Volume 915
Internal delensing of cosmic microwave background polarization B-Modes with the POLARBEAR experiment
International audienceUsing only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments
Search for a new gauge boson in the Experiment (APEX)
We present a search at Jefferson Laboratory for new forces mediated by
sub-GeV vector bosons with weak coupling to electrons. Such a
particle can be produced in electron-nucleus fixed-target scattering and
then decay to an pair, producing a narrow resonance in the QED trident
spectrum. Using APEX test run data, we searched in the mass range 175--250 MeV,
found no evidence for an reaction, and set an upper limit of
. Our findings demonstrate that fixed-target
searches can explore a new, wide, and important range of masses and couplings
for sub-GeV forces.Comment: 5 pages, 5 figures, references adde
Measurements of tropospheric ice clouds with a ground-based CMB polarization experiment, POLARBEAR
The polarization of the atmosphere has been a long-standing concern for ground-based experiments targeting cosmic microwave background (CMB) polarization. Ice crystals in upper tropospheric clouds scatter thermal radiation from the ground and produce a horizontally polarized signal. We report a detailed analysis of the cloud signal using a ground-based CMB experiment, Polarbear, located at the Atacama desert in Chile and observing at 150 GHz. We observe horizontally polarized temporal increases of low-frequency fluctuations ("polarized bursts," hereafter) of 720.1 K when clouds appear in a webcam monitoring the telescope and the sky. The hypothesis of no correlation between polarized bursts and clouds is rejected with >24\u3c3 statistical significance using three years of data. We consider many other possibilities including instrumental and environmental effects, and find no reasons other than clouds that can explain the data better. We also discuss the impact of the cloud polarization on future ground-based CMB polarization experiments
The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication.
The PB2-A is the first of three telescopes in the Simon Array (SA), which is an
array of three cosmic microwave background (CMB) polarization sensitive
telescopes located at the POLARBEAR (PB) site in Northern Chile. As the
successor to the PB experiment, each telescope and receiver combination is
named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical
receivers operating at 90 and 150 GHz while PB2-C will house a receiver
operating at 220 and 270 GHz. Each receiver contains a focal plane consisting
of seven close-hex packed lenslet coupled sinuous antenna transition edge
sensor bolometer arrays. Each array contains 271 di-chroic optical pixels each
of which have four TES bolometers for a total of 7588 detectors per receiver.
We have produced a set of two types of candidate arrays for PB2-A. The first we
call Version 11 (V11) and uses a silicon oxide (SiOx) for the transmission
lines and cross-over process for orthogonal polarizations. The second we call
Version 13 (V13) and uses silicon nitride (SiNx) for the transmission lines and
cross-under process for orthogonal polarizations. We have produced enough of
each type of array to fully populate the focal plane of the PB2-A receiver. The
average wirebond yield for V11 and V13 arrays is 93.2% and 95.6% respectively.
The V11 arrays had a superconducting transition temperature (Tc) of 452 +/- 15
mK, a normal resistance (Rn) of 1.25 +/- 0.20 Ohms, and saturations powers of
5.2 +/- 1.0 pW and 13 +/- 1.2 pW for the 90 and 150 GHz bands respectively. The
V13 arrays had a superconducting transition temperature (Tc) of 456 +/-6 mK, a
normal resistance (Rn) of 1.1 +/- 0.2 Ohms, and saturations powers of 10.8 +/-
1.8 pW and 22.9 +/- 2.6 pW for the 90 and 150 GHz bands respectively
Results and Limits of Time Division Multiplexing for the BICEP Array High Frequency Receivers
Time-Division Multiplexing is the readout architecture of choice for many
ground and space experiments, as it is a very mature technology with proven
outstanding low-frequency noise stability, which represents a central challenge
in multiplexing. Once fully populated, each of the two BICEP Array high
frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES
detectors tiled on the focal plane. The constraints set by these two receivers
required a redesign of the warm readout electronics. The new version of the
standard Multi Channel Electronics, developed and built at the University of
British Columbia, is presented here for the first time. BICEP Array operates
Time Division Multiplexing readout technology to the limits of its capabilities
in terms of multiplexing rate, noise and crosstalk, and applies them in
rigorously demanding scientific application requiring extreme noise performance
and systematic error control. Future experiments like CMB-S4 plan to use TES
bolometers with Time Division/SQUID-based readout for an even larger number of
detectors.Comment: 10 pages, 7 figures, Submitted to Journal of Low Temperature Physic
- …