447 research outputs found

    Tracing the base of protostellar wind(s) towards the high-mass star forming region AFGL 5142: VLA continuum and VLBA water maser observations

    Full text link
    We have conducted phase-reference multi-epoch observations of the 22.2 GHz water masers using the VLBA and multi-frequency study of the continuum emission using the VLA towards the high-mass SFR AFGL 5142. The water maser emission comes from two elongated structures (indicated as Group I and Group II), with the measured proper motions aligned along the structures' elongation axes. Each group consists of two (blue- and red-shifted) clusters of features separated by a few hundreds and thousands of AU respectively for Group I and Group II. The maser features of Group II have both positions and velocities aligned along a direction close to the axis of the outflow traced by HCO+ and SiO emission on angular scales of tens of arcsec. We predict that the maser emission arises from dense, shocked molecular clumps displaced along the axis of the molecular outflow. The two maser clusters of Group I are oriented on the sky along a direction forming a large angle (> 60 degrees) with the axis of the jet/outflow traced by Group II maser features. We have detected a compact (8.4 and 22 GHz) continuum source that falls close to the centroid of Group I masers, indicating that the source ionizing the gas is also responsible for the excitation of the water masers. The kinematic analysis indicates that the Group I masers trace outflowing rather than rotating gas, discarding the Keplerian disk scenario proposed in a previous paper for Group I. Since the axis joining the two maser clusters of Group II does not cross the position of the continuum source, Group II masers might be excited by an (undetected) massive YSO, distinct from the one (pinpointed by the VLA continuum emission) responsible for the excitation of the Group I masers.Comment: 12 pages, 3 figures, accepted for publication in A&

    Unveiling the gas kinematics at 10 AU scales in high-mass star-forming regions (Milliarcsecond structure of 6.7 GHz methanol masers)

    Get PDF
    This work presents a study of the milliarcsecond structure of the 6.7 GHz methanol masers at high-velocity resolution (0.09 km s^(-1)) in four high-mass star-forming regions: G16.59-0.05, G23.01-0.41, IRAS20126+4104, and AFGL5142. We studied these sources by means of multi-epoch VLBI observations in the 22 GHz water and 6.7 GHz methanol masers, to determine the 3-D gas kinematics within a few thousand AU from the (proto)star. The present work exploits the 6.7 GHz maser data collected so far to investigate the milliarcsecond structure of this maser emission at high-velocity resolution. Most of the detected 6.7 GHz maser features present an ordered (linear, or arc-like) distribution of maser spots on the plane of the sky, together with a regular variation in the spot LSR velocity (V_LSR) with position. Typical values for the amplitude of the V_LSR gradients (defined in terms of the derivative of the spot V_LSR with position) are found to be 0.1-0.2 km s^(-1) mas^(-1). In each of the four target sources, the orientation and the amplitude of most of the feature V_LSR gradients remain remarkably stable in time, on timescales of (at least) several years. We also find that the data are consistent with having the V_LSR gradients and proper motion vectors in the same direction on the sky, considered the measurement uncertainties. The time persistency, the ordered angular and spatial distribution, and the orientation generally similar to the proper motions, altogether suggest a kinematical interpretation for the origin of the 6.7 GHz maser V_LSR gradients. This work shows that the organized motions (outflow, infall, and rotation) revealed by the (22 GHz water and 6.7 GHz methanol) masers on large scales (~100-1000 AU) also persist to very small (~10 AU) scales.Comment: 14 pages, 7 figures, accepted for publication in Astronomy and Astrophysics Journa

    Momentum-driven outflow emission from an O-type YSO: Comparing the radio jet with the molecular outflow

    Get PDF
    Aims: We want to study the physical properties of the ionized jet emission in the vicinity of an O-type young stellar object (YSO), and estimate how efficient is the transfer of energy and momentum from small- to large-scale outflows. Methods: We conducted Karl G. Jansky Very Large Array (VLA) observations, at both 22 and 45 GHz, of the compact and faint radio continuum emission in the high-mass star-forming region G023.01-00.41, with an angular resolution between 0.3" and 0.1", and a thermal rms of the order of 10 uJy/beam. Results: We discovered a collimated thermal (bremsstrahlung) jet emission, with a radio luminosity (L_rad) of 24 mJy kpc^2 at 45 GHz, in the inner 1000 AU from an O-type YSO. The radio thermal jet has an opening angle of 44 degrees and brings a momentum rate of 8 10^-3 M_sun yr^-1 km/s. By combining the new data with previous observations of the molecular outflow and water maser shocks, we can trace the outflow emission from its driving source through the molecular clump, across more than two order of magnitude in length (500 AU-0.2 pc). We find that the momentum-transfer efficiency, between the inner jet emission and the extended outflow of entrained ambient gas, is near unity. This result suggests that the large-scale flow is swept-up by the mechanical force of the radio jet emission, which originates in the inner 1000 AU from the high-mass YSO.Comment: 5 pages, 2 figures, 2 tables, accepted by Astronomy & Astrophysic

    Unveiling Sources of Heating in the Vicinity of the Orion BN/KL Hot Core as Traced by Highly Excited Inversion Transitions of Ammonia

    Full text link
    Using the Expanded Very Large Array, we have mapped the vicinity of the Orion BN/KL Hot Core with sub-arcsecond angular resolution in seven metastable inversion transitions of ammonia: (J,K)=(6,6) to (12,12). This emission comes from levels up to 1500 K above the ground state, enabling identification of source(s) responsible for heating the region. We used this multi-transition dataset to produce images of the rotational/kinetic temperature and the column density of ammonia for ortho and para species separately and on a position-by-position basis. We find rotational temperature and column density in the range 160-490 K and (1-4)x10^17 cm^-2, respectively. Our spatially-resolved images show that the highest (column) density and hottest gas is found in a northeast-southwest elongated ridge to the southeast of Source I. We have also measured the ortho-para ratio of ammonia, estimated to vary in the range 0.9-1.6. Enhancement of ortho with respect to para and the offset of hot ammonia emission peaks from known (proto)stellar sources provide evidence that the ammonia molecules have been released from dust grains into the gas-phase through the passage of shocks and not by stellar radiation. We propose that the combined effect of Source I's proper motion and its low-velocity outflow impinging on a pre-existing dense medium is responsible for the excitation of ammonia and the Orion Hot Core. Finally, we found for the first time evidence of a slow (5 km/s) and compact (1000 AU) outflow towards IRc7.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA. 8 pages, 4 figure

    Infall and outflow within 400 AU from a high-mass protostar. 3-D velocity fields from methanol and water masers in AFLG 5142

    Full text link
    Observational signatures of infalling envelopes and outflowing material in early stages of protostellar evolution, and at small radii from the protostar, are essential to progress in the understanding of the mass-accretion process in star formation. In this letter, we report a detailed study of the accretion and outflow structure around a protostar in the well-known high-mass star-forming region AFGL 5142. We focus on the mm source MM-1, which exhibits hot-core chemistry, radio continuum emission, and strong water and methanol masers. Remarkably, our Very Long Baseline Interferometry (VLBI) observations of molecular masers over six years provided us with the 3-D velocity field of circumstellar molecular gas with a resolution of 0.001-0.005 arcseconds and at radii <0.23 arcseconds (or 400 AU) from the protostar. In particular, our measurements of methanol maser emission enabled, for the first time, a direct measurement of infall of a molecular envelope (radius of 300 AU and velocity of 5 km/s) onto an intermediate- to high-mass protostar. We estimate an infall rate of 0.0006 n_8 Msun/year, where n_8 is the ambient volume density in units of 10^8 cm-3 (required for maser excitation). In addition, our measurements of water maser (and radio continuum) emission identify a collimated bipolar molecular outflow (and ionized jet) from MM-1. The evidence of simultaneous accretion and outflow at small spatial scales, makes AFGL 5142 an extremely compelling target for high-angular resolution studies of high-mass star formation.Comment: 6 pages, 4 figures, 1 table, accepted for publication in A&A Letter

    A Feature Movie of SiO Emission 20-100 AU from the Massive Young Stellar Object Orion Source I

    Get PDF
    We present multi-epoch VLBA imaging of the 28SiO v=1 & v=2, J=1-0 maser emission toward the massive YSO Orion Source I. Both SiO transitions were observed simultaneously with an angular resolution of ~0.5 mas (~0.2 AU for d=414 pc). Here we explore the global properties and kinematics of the emission through two 19-epoch animated movies spanning 21 months (2001 March 19 to 2002 December 10). These movies provide the most detailed view to date of the dynamics and temporal evolution of molecular material within ~20-100 AU of a massive (~>8M_sun) YSO. The bulk of the SiO masers surrounding Source I lie in an X-shaped locus; emission in the South/East arms is predominantly blueshifted and in the North and West is predominantly redshifted. In addition, bridges of intermediate-velocity emission connect the red and blue sides of the emission distribution. We have measured proper motions of >1000 maser features and find a combination of radially outward migrations along the four arms and motions tangent to the bridges. We interpret the SiO masers as arising from a wide-angle bipolar wind emanating from a rotating, edge-on disk. The detection of maser features along extended, curved filaments suggests that magnetic fields may play a role in launching and/or shaping the wind. Our observations appear to support a picture in which stars with M ~>8 M_sun form via disk-mediated accretion. However, we cannot rule out that the Source I disk may have been formed or altered following a close encounter. (Abridged).Comment: Accepted to ApJ (January 2010); a full resolution version along with two accompanying GIF movies may be found at http://www.cfa.harvard.edu/kalypso

    A study on subarcsecond scales of the ammonia and continuum emission toward the G16.59-0.05 high-mass star-forming region

    Full text link
    We wish to investigate the structure, velocity field, and stellar content of the G16.59-0.05 high-mass star-forming region, where previous studies have established the presence of two almost perpendicular (NE-SW and SE-NW), massive outflows, and a rotating disk traced by methanol maser emission. We performed Very Large Array observations of the radio continuum and ammonia line emission, complemented by COMICS/Subaru and Hi-GAL/Herschel images in the mid- and far-infrared (IR). Our centimeter continuum maps reveal a collimated radio jet that is oriented E-W and centered on the methanol maser disk, placed at the SE border of a compact molecular core. The spectral index of the jet is negative, indicating non-thermal emission over most of the jet, except the peak close to the maser disk, where thermal free-free emission is observed. We find that the ammonia emission presents a bipolar structure consistent (on a smaller scale) in direction and velocity with that of the NE-SW bipolar outflow detected in previous CO observations. After analyzing our previous N2H+(1-0) observations again, we conclude that two scenarios are possible. In one case both the radio jet and the ammonia emission would trace the root of the large-scale CO bipolar outflow. The different orientation of the jet and the ammonia flow could be explained by precession and/or a non-isotropic density distribution around the star. In the other case, the N2H+(1-0) and ammonia bipolarity is interpreted as two overlapping clumps moving with different velocities along the line of sight. The ammonia gas also seems to undergo rotation consistent with the maser disk. Our IR images complemented by archival data allow us to derive a bolometric luminosity of about 10^4 L_sun and to conclude that most of the luminosity is due to the young stellar object associated with the maser disk.Comment: 11 pages, 12 figures, published in Astronomy and Astrophysic

    A Documentary of High-Mass Star Formation: Probing the Dynamical Evolution of Orion Source I on 10-100 AU Scales using SiO Masers

    Full text link
    A comprehensive picture of high-mass star formation has remained elusive, in part because examples of high-mass YSOs tend to be relatively distant, deeply embedded, and confused with other emission sources. These factors have impeded dynamical investigations within tens of AU of high-mass YSOs--scales that are critical for probing the interfaces where outflows from accretion disks are launched and collimated. Using observations of SiO masers obtained with the VLA and the VLBA, the KaLYPSO project is overcoming these limitations by mapping the structure and dynamical/temporal evolution of the material 10-1000 AU from the nearest high-mass YSO: Radio Source I in the Orion BN/KL region. Our data include ~40 epochs of VLBA observations over a several-year period, allowing us to track the proper motions of individual SiO maser spots and to monitor changes in the physical conditions of the emitting material with time. Ultimately these data will provide 3-D maps of the outflow structure over approximately 30% of the outflow crossing time. Here we summarize recent results from the KaLYPSO project, including evidence that high-mass star formation is occurring via disk-mediated accretion.Comment: 5 pages; to appear in the proceedings of IAU Symposium 242, Astrophysical Masers and their Environments, ed. J. Chapman & W. Baa
    corecore