Using the Expanded Very Large Array, we have mapped the vicinity of the Orion
BN/KL Hot Core with sub-arcsecond angular resolution in seven metastable
inversion transitions of ammonia: (J,K)=(6,6) to (12,12). This emission comes
from levels up to 1500 K above the ground state, enabling identification of
source(s) responsible for heating the region. We used this multi-transition
dataset to produce images of the rotational/kinetic temperature and the column
density of ammonia for ortho and para species separately and on a
position-by-position basis. We find rotational temperature and column density
in the range 160-490 K and (1-4)x10^17 cm^-2, respectively. Our
spatially-resolved images show that the highest (column) density and hottest
gas is found in a northeast-southwest elongated ridge to the southeast of
Source I. We have also measured the ortho-para ratio of ammonia, estimated to
vary in the range 0.9-1.6. Enhancement of ortho with respect to para and the
offset of hot ammonia emission peaks from known (proto)stellar sources provide
evidence that the ammonia molecules have been released from dust grains into
the gas-phase through the passage of shocks and not by stellar radiation. We
propose that the combined effect of Source I's proper motion and its
low-velocity outflow impinging on a pre-existing dense medium is responsible
for the excitation of ammonia and the Orion Hot Core. Finally, we found for the
first time evidence of a slow (5 km/s) and compact (1000 AU) outflow towards
IRc7.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA.
8 pages, 4 figure