234 research outputs found

    Global Assessment of Grassland Carrying Capacities and Relative Stocking Densities of Livestock

    Get PDF
    Although many suggest that future diets should include more plant-based proteins, animal-sourced foods are unlikely to completely disappear from our diet. Grasslands yield a notable part of the world’s animal protein production, but thus far, there is no global insight into the relationship between current livestock stocking densities and the availability of grassland forage resources. This inhibits acting upon concerns over the negative effects of overgrazing in some areas and utilising the potential for increasing production in others. Previous research has examined the potential of sustainable grazing but lacks generic and observation-based methods needed to fully understand the opportunities and threats of grazing. Here we provide a novel framework and method to estimate global livestock carrying capacity and relative stocking density, i.e. the reported livestock distribution relative to the estimated carrying capacity. We first estimate the aboveground biomass that is available for grazers on grasslands and savannas based on the MODIS Net Primary Production (NPP) approach on a global scale. This information is then used to calculate reasonable livestock carrying capacities, using slopes, forest cover and animal forage requirements as restrictions. With this approach, we found that stocking rates exceed the forage provided by grasslands in northwestern Europe, midwestern United States, southern China and the African Sahel. In this study, we provide the highest resolution global datasets to date. Our results have implications for prospective global food system modelling as well as national agricultural and environmental policies. These maps and findings can assist with conservation efforts to reduce land degradation associated with overgrazing and help identify undergrazed areas for targeted sustainable intensification efforts

    All-optical formation of coherent dark states of silicon-vacancy spins in diamond

    Get PDF
    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities which offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted a lot of interest due to its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2*, exceeding 250 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.Comment: Additional data and analysis is available for download in PDF format at the publications section of http://www.amop.phy.cam.ac.uk/amop-m

    Risk of Climate-Related Impacts on Global Rangelands – A Review and Modelling Study

    Get PDF
    Climate change threatens the ability of global rangelands to provide food, support livelihoods and deliver important ecosystems services. The extent and magnitude of potential impacts are however poorly understood. In this study, we review the risk of climate impacts along the rangeland systems food supply chain. We also present results from biophysical modelling simulations and spatial data analyses to identify where and to what extent rangelands may be at climatic risk. Although a quantification of the net impacts of climate change on rangeland production systems is beyond the reach of our current understanding, there is strong evidence that there will be impacts throughout the supply chain, from feed and animal production to processing, storage, transport, retailing and human consumption. Regarding grazing biomass production, this study finds that mean herbaceous biomass is projected to decrease across global rangelands between 2000 and 2050 under RCP 8.5 (-4.7%), while inter- (year-to-year) and intra- (month-to-month) annual variabilities are projected to increase (+21.3% and +8.2%, respectively). These averaged global estimates mask large spatial heterogeneities, with 74% of global rangeland area projected to experience a decline in mean biomass, 64% an increase in inter-annual variability and 54% an increase in intra-annual variability. The potentially most damaging vegetation trends for livestock production (i.e., simultaneous decreases in mean biomass and increases in inter-annual variability) are projected to occur in rangeland communities that are currently the most vulnerable (here, with the lowest livestock productivities and economic development levels and with the highest projected increases in human population densities). Large uncertainties remain as to climate futures and the exposure and responses of the interlinked human and natural systems to climatic changes over time. Consequently, adaptation choices will need to build on robust methods of designing, implementing and evaluating detailed development pathways, and account for a wide range of possible futures

    Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland

    Get PDF
    Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression

    PILER-CR: Fast and accurate identification of CRISPR repeats

    Get PDF
    BACKGROUND: Sequencing of prokaryotic genomes has recently revealed the presence of CRISPR elements: short, highly conserved repeats separated by unique sequences of similar length. The distinctive sequence signature of CRISPR repeats can be found using general-purpose repeat- or pattern-finding software tools. However, the output of such tools is not always ideal for studying these repeats, and significant effort is sometimes needed to build additional tools and perform manual analysis of the output. RESULTS: We present PILER-CR, a program specifically designed for the identification and analysis of CRISPR repeats. The program executes rapidly, completing a 5 Mb genome in around 5 seconds on a current desktop computer. We validate the algorithm by manual curation and by comparison with published surveys of these repeats, finding that PILER-CR has both high sensitivity and high specificity. We also present a catalogue of putative CRISPR repeats identified in a comprehensive analysis of 346 prokaryotic genomes. CONCLUSION: PILER-CR is a useful tool for rapid identification and classification of CRISPR repeats. The software is donated to the public domain. Source code and a Linux binary are freely available at

    Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities

    Get PDF
    Vertical stacking of atomically thin layered materials opens new possibilities for the fabrication of heterostructures with favorable optoelectronic properties. The combination of graphene, hexagonal boron nitride and semiconducting transition metal dichalcogenides allows fabrication of electroluminescence (EL) devices, compatible with a wide range of substrates. Here, we demonstrate a full integration of an electroluminescent van der Waals heterostructure in a monolithic optical microcavity made of two high reflectivity dielectric distributed Bragg reflectors (DBRs). Owing to the presence of graphene and hexagonal boron nitride protecting the WSe2 during the top mirror deposition, we fully preserve the optoelectronic behaviour of the device. Two bright cavity modes appear in the EL spectrum featuring Q-factors of 250 and 580 respectively: the first is attributed directly to the monolayer area, while the second is ascribed to the portion of emission guided outside the WSe2 island. By embedding the EL device inside the microcavity structure, a significant modification of the directionality of the emitted light is achieved, with the peak intensity increasing by nearly two orders of magnitude at the angle of the maximum emission compared with the same EL device without the top DBR. Furthermore, the coupling of the WSe2 EL to the cavity mode with a dispersion allows a tuning of the peak emission wavelength exceeding 35 nm (80 meV) by varying the angle at which the EL is observed from the microcavity. This work provides a route for the development of compact vertical-cavity surface-emitting devices based on van der Waals heterostructures

    What do people with lung cancer and stroke expect from patient navigation?: A qualitative study in Germany

    Get PDF
    Objective This qualitative study investigated patients' needs and wishes in relation to patient navigation. Design A qualitative interview study was conducted. Participants were invited to take part in three in-depth interviews over a period of 6-12 months. Thematic analysis was used. Setting Interviewees were sought in the Berlin metropolitan area of Germany in academic university hospitals, in rehabilitation clinics and through self-help organisations. Participants The sample consisted of individuals diagnosed with lung cancer (n=20) or stroke (n=20). Results From the perspective of interviewees, patient navigators should function as consistent contact persons, present during the whole care trajectory. Their role would be to guide patients through an often confusing healthcare landscape, offering practical, advisory and emotional assistance corresponding to patients' needs. The study shows that-independent of the disease-participants had similar expectations and needs regarding support from navigators. Conclusion For chronic and complex diseases-as is the case with lung cancer and stroke-it appears less important for navigators to fulfil disease-specific tasks. Rather, they should ensure that patients' more general needs, in relation to social, practical and emotional support, are met in a way that suits their individual wishes. Following these results, patient navigation programmes might be designed to include generic elements, which should then be adapted to the infrastructure in a particular healthcare region and to the particularities of a specific healthcare system

    Cloning and expression of islandisin, a new thermostable subtilisin from Fervidobacterium islandicum, in Escheria coli

    Get PDF
    A gene encoding a subtilisin-like protease, designated islandisin, from the extremely thermophilic bacterium Fervidobacterium islandicum (DSMZ 5733) was cloned and actively expressed in Escherichia coli. The gene was identified by PCR using degenerated primers based on conserved regions around two of the three catalytic residues (Asp, His, and Ser) of subtilisin-like serine protease-encoding genes. Using inverse PCR regions flanking the catalytic residues, the gene could be cloned. Sequencing revealed an open reading frame of 2,106 bp. The deduced amino acid sequence indicated that the enzyme is synthesized as a proenzyme with a putative signal sequence of 33 amino acids (aa) in length. The mature protein contains the three catalytic residues (Asp177, His215, and Ser391) and has a length of 668 aa. Amino acid sequence comparison and phylogenetic analysis indicated that this enzyme could be classified as a subtilisin-like serine protease in the subgroup of thermitase. The whole gene was amplified by PCR, ligated into pET-15b, and successfully expressed in E. coli BL21(DE3)pLysS. The recombinant islandisin was purified by heat denaturation, followed by hydroxyapatite chromatography. The enzyme is active at a broad range of temperatures (60 to 80°C) and pHs (pH 6 to 8.5) and shows optimal proteolytic activity at 80°C and pH 8.0. Islandisin is resistant to a number of detergents and solvents and shows high thermostability over a long period of time (up to 32 h) at 80°C with a half-life of 4 h at 90°C and 1.5 h at 100°

    Single-Pair FRET Microscopy Reveals Mononucleosome Dynamics

    Get PDF
    We applied spFRET microscopy for direct observation of intranucleosomal DNA dynamics. Mononucleosomes, reconstituted with DNA containing a FRET pair at the dyad axis and exit of the nucleosome core particle, were immobilized through a 30 bp DNA tether on a polyethyleneglycol functionalized slide and visualized using Total Internal Reflection Fluorescence microscopy. FRET efficiency time-traces revealed two types of dynamics: acceptor blinking and intramolecular rearrangements. Both Cy5 and ATTO647N acceptor dyes showed severe blinking in a deoxygenated buffer in the presence of 2% βME. Replacing the triplet quencher βME with 1 mM Trolox eliminated most blinking effects. After suppression of blinking three subpopulations were observed: 90% appeared as dissociated complexes; the remaining 10% featured an average FRET efficiency in agreement with intact nucleosomes. In 97% of these intact nucleosomes no significant changes in FRET efficiency were observed in the experimentally accessible time window ranging from 10 ms to 10’s of seconds. However, 3% of the intact nucleosomes showed intervals with reduced FRET efficiency, clearly distinct from blinking, with a lifetime of 120 ms. These fluctuations can unambiguously be attributed to DNA breathing. Our findings illustrate not only the merits but also typical caveats encountered in single-molecule FRET studies on complex biological systems
    • …
    corecore