1,499 research outputs found
Effect of endurance training on lung function: A one year study
The official published version can be accessed from the link below.Objective: To identify in a follow up study airway changes occurring during the course of a sport season in healthy endurance athletes training in a Mediterranean region.
Methods: Respiratory pattern and function were analysed in 13 healthy endurance trained athletes, either during a maximal exercise test, or at rest and during recovery through respiratory manoeuvres (spirometry and closing volume tests). The exercise test was conducted on three different occasions: during basic endurance training and then during the precompetition and competitive periods.
Results: During the competitive period, a slight but non-clinically significant decrease was found in forced vital capacity (â3.5%, p = 0.0001) and an increase in slope of phase III (+25%, p = 0.0029), both at rest and after exercise. No concomitant reduction in expiratory flow rates was noticed. During maximal exercise there was a tachypnoeic shift over the course of the year (mean (SEM) breathing frequency and tidal volume were respectively 50 (2) cycles/min and 3.13 (0.09) litres during basic endurance training v 55 (3) cycles/min and 2.98 (0.10) litres during the competitive period; p<0.05).
Conclusions: This study does not provide significant evidence of lung function impairment in healthy Mediterranean athletes after one year of endurance training
Mantle formation, coagulation and the origin of cloud/core-shine: II. Comparison with observations
Many dense interstellar clouds are observable in emission in the near-IR,
commonly referred to as "Cloudshine", and in the mid-IR, the so-called
"Coreshine". These C-shine observations have usually been explained with grain
growth but no model has yet been able to self-consistently explain the dust
spectral energy distribution from the near-IR to the submm. We want to
demonstrate the ability of our new core/mantle evolutionary dust model THEMIS
(The Heterogeneous dust Evolution Model at the IaS), which has been shown to be
valid in the far-IR and submm, to reproduce the C-shine observations. Our
starting point is a physically motivated core/mantle dust model. It consists of
3 dust populations: small aromatic-rich carbon grains; bigger core/mantle
grains with mantles of aromatic-rich carbon and cores either made of amorphous
aliphatic-rich carbon or amorphous silicate. We assume an evolutionary path
where these grains, when entering denser regions, may first form a second
aliphatic-rich carbon mantle (coagulation of small grains, accretion of carbon
from the gas phase), second coagulate together to form large aggregates, and
third accrete gas phase molecules coating them with an ice mantle. To compute
the corresponding dust emission and scattering, we use a 3D Monte-Carlo
radiative transfer code. We show that our global evolutionary dust modelling
approach THEMIS allows us to reproduce C-shine observations towards dense
starless clouds. Dust scattering and emission is most sensitive to the cloud
central density and to the steepness of the cloud density profile. Varying
these two parameters leads to changes, which are stronger in the near-IR, in
both the C-shine intensity and profile. With a combination of aliphatic-rich
mantle formation and low-level coagulation into aggregates, we can
self-consistently explain the observed C-shine and far-IR/submm emission
towards dense starless clouds.Comment: Paper accepted for publication in A&A with companion paper "Mantle
formation, coagulation and the origin of cloud/core-shine: I. Dust scattering
and absorption in the IR", A.P Jones, M. Koehler, N. Ysard, E. Dartois, M.
Godard, L. Gavila
Towards the noise reduction of piezoelectrical-driven synthetic jet actuators
This paper details an experimental investigation aimed at reducing the noise output of piezoelectrical-driven synthetic jet actuators without compromising peak jet velocity. Specifically, the study considers double-chamber ('back-to-back') actuators for anti-phase noise suppression and corrugated-lobed orifices as a method to enhance turbulent mixing of the jets to suppress jet noise. The study involved the design, manufacture and bench test of interchangeable actuator hardware. Hot-wire anemometry and microphone recordings were employed to acquire velocity and noise measurements respectively for each chamber configuration and orifice plate across a range of excitation frequencies and for a fixed input voltage. The data analysis indicated a 32% noise reduction (20 dBA) from operating a singlechamber, circular orifice SJA to a double-chamber, corrugated-lobed orifice SJA at the Helmholtz resonant frequency. Results also showed there was a small reduction in peak jet velocity of 7% (~3 m/s) between these two cases based on orifices of the same discharge area. Finally, the electrical-to-fluidic power conversion efficiency of the double-chamber actuator was found to be 15% across all orifice designs at the resonant frequency; approximately double the efficiency of a single-chamber actuator. This work has thus demonstrated feasible gains in noise reduction and power efficiency through synthetic jet actuator design
Botulinum toxin and refractory non-neurogenic overactive detrusor
AbstractPurposeTo study the value and efficacy of botulinum toxin for treatment of cases of non-neurogenic detrusor overactivity (NNDO) that are refractory to anticholinergic drugs.Materials and methodsA systematic review of the literature, based on a keyword search of the Medline database. Selection of articles in French and English (meta-analyses, reviews, case studies and randomized, controlled clinical trials) on intradetrusor botulinum toxin injection in the management of refractory NNDO.ResultsNineteen publications (including three randomized, controlled trials) were selected. Intradetrusor injection of botulinum toxin in patients with refractory NNDO has produced promising results, with a significant improvement in physical symptoms, urodynamic parameters and quality of life. The rare side effects consist primarily of dose-dependent urine retention.ConclusionOn the basis of preliminary data, botulinum toxin appears to be a valuable therapeutic option and fills the gap between anticholinergics and surgery in the treatment of NNDO that is refractory to anticholinergic agents. Botulinum toxin has a promising future in urology but requires further scientific evaluation
Sulphur-bearing molecules in diffuse molecular clouds: new results from SOFIA/GREAT and the IRAM 30 m telescope
We have observed five sulphur-bearing molecules in foreground diffuse
molecular clouds lying along the sight-lines to five bright continuum sources.
We have used the GREAT instrument on SOFIA to observe the 1383 GHz transitions of SH towards the star-forming regions W31C,
G29.96-0.02, G34.3+0.1, W49N and W51, detecting foreground absorption towards
all five sources; and the EMIR receivers on the IRAM 30m telescope at Pico
Veleta to detect the HS 1(10)-1(01), CS J=2-1 and SO 3(2)-2(1) transitions.
In nine foreground absorption components detected towards these sources, the
inferred column densities of the four detected molecules showed relatively
constant ratios, with N(SH)/N(HS) in the range 1.1 - 3.0, N(CS)/N(HS)
in the range 0.32 - 0.61, and N(SO)/N(HS) in the range 0.08 - 0.30. The
observed SH/H ratios - in the range (0.5-2.6) - indicate
that SH (and other sulphur-bearing molecules) account for << 1% of the
gas-phase sulphur nuclei. The observed abundances of sulphur-bearing molecules,
however, greatly exceed those predicted by standard models of cold diffuse
molecular clouds, providing further evidence for the enhancement of endothermic
reaction rates by elevated temperatures or ion-neutral drift. We have
considered the observed abundance ratios in the context of shock and turbulent
dissipation region (TDR) models. Using the TDR model, we find that the
turbulent energy available at large scale in the diffuse ISM is sufficient to
explain the observed column densities of SH and CS. Standard shock and TDR
models, however, fail to reproduce the column densities of HS and SO by a
factor of about 10; more elaborate shock models - in which account is taken of
the velocity drift, relative to H, of SH molecules produced by the
dissociative recombination of HS - reduce this discrepancy to a factor
~ 3.Comment: 30 pages, accepted for publication in A&
Low-velocity shocks: signatures of turbulent dissipation in diffuse irradiated gas
Context. Large-scale motions in galaxies (supernovae explosions, galaxy collisions, galactic shear etc.) generate turbulence, which allows a fraction of the available kinetic energy to cascade down to small scales before it is dissipated.
Aims. We establish and quantify the diagnostics of turbulent dissipation in mildly irradiated diffuse gas in the specific context of shock structures.
Methods. We incorporated the basic physics of photon-dominated regions into a state-of-the-art steady-state shock code. We examined the chemical and emission properties of mildly irradiated (G_0 = 1) magnetised shocks in diffuse media (n_H = 10^2 to 10^4 cm^(-3)) at low- to moderate velocities (from 3 to 40 km s^(-1)).
Results. The formation of some molecules relies on endoergic reactions. Their abundances in J-type shocks are enhanced by several orders of magnitude for shock velocities as low as 7 km s^(-1). Otherwise most chemical properties of J-type shocks vary over less than an order of magnitude between velocities from about 7 to about 30 km s^(-1), where H_2 dissociation sets in. C-type shocks display a more gradual molecular enhancement with increasing shock velocity.
We quantified the energy flux budget (fluxes of kinetic, radiated and magnetic energies) with emphasis on the main cooling lines of the cold interstellar medium. Their sensitivity to shock velocity is such that it allows observations to constrain statistical distributions of shock velocities.
We fitted various probability distribution functions (PDFs) of shock velocities to spectroscopic observations of the galaxy-wide shock in Stephanâs Quintet and of a Galactic line of sight which samples diffuse molecular gas in Chamaeleon. In both cases, low velocities bear the greatest statistical weight and the PDF is consistent with a bimodal distribution. In the very low velocity shocks (below 5 km s^(-1)), dissipation is due to ion-neutral friction and it powers H_2 low-energy transitions and atomic lines. In moderate velocity shocks (20 km s^(-1) and above), the dissipation is due to viscous heating and accounts for most of the molecular emission. In our interpretation a significant fraction of the gas in the line of sight is shocked (from 4% to 66%). For example, C^+ emission may trace shocks in UV irradiated gas where C^+ is the dominant carbon species.
Conclusions. Low- and moderate velocity shocks are important in shaping the chemical composition and excitation state of the interstellar gas. This allows one to probe the statistical distribution of shock velocities in interstellar turbulence
SUSTAINABLE DEVELOPMENT AND THE PROCESS OF JUSTIFYING CHOICES IN A CONTROVERSIAL UNIVERSE
All in all, neither the path of the generic principle nor that of the reduction to existing principles would appear to be fully satisfactory as the basis for establishing the legitimacy of sustainable development or as a way of making sustainability a principle of legitimacy by its own. We should probably resign ourselves to seeing in this idea a composite construction, still striving towards the formation of a new "superior common principle", without this principle yet being able to be completely clarified and validated. What we have here is an example of the sort of "compromise" described by Boltanski and Thévenot (1991, p.338): "In the compromise, the participants abandon the idea of clarifying the principle of their agreement but endeavour to maintain a frame of mind aiming at the common good." If we want to consolidate the compromise developing around sustainability, it would be well advised to seek the support of tests using well-formed objects. To this end, steps should be taken to move the emphasis away from long-term and unknowable sustainability requirements and closer to secondbest criteria focused on the transitional developments and possible risks of intentional human action, the ways of managing the linking of the different temporalities in play -- as regards the biophysical phenomena, their understanding and the main worlds of legitimacy (Godard, 1992) -- and the introduction of deliberation within the present generations as to what they feel best describes their identity, those things they would like to pass on
Strain in a silicon-on-insulator nanostructure revealed by 3D x-ray Bragg ptychography
International audienceProgresses in the design of well-defined electronic band structure and dedicated functionalities rely on the high control of complex architectural device nano-scaled structures. This includes the challenging accurate description of strain fields in crystalline structures, which requires non invasive and three-dimensional (3D) imaging methods. Here, we demonstrate in details how x-ray Bragg ptychography can be used to quantify in 3D a displacement field in a lithographically patterned silicon-on-insulator structure. The image of the crystalline properties, which results from the phase retrieval of a coherent intensity data set, is obtained from a well-controlled optimized process, for which all steps are detailed. These results confirm the promising perspectives of 3D Bragg ptychography for the investigation of complex nano-structured crystals in material science
Ligurian pyroxenite-peridotite sequences (Italy) and the role of melt-rock reaction in creating enriched-MORB mantle sources
Deep melt intrusion and melt-peridotite interaction may introduce small-scale heterogeneity in the MORB mantle. These processes generate pyroxenite-bearing veined mantle that represent potential mantle sources of oceanic basalts. Natural proxies of such veined mantle are very rare and our understanding of mechanisms governing the chemical modification of mantle peridotite by MORB-type pyroxenite emplacement is very limited. We report the results of detailed spatially-controlled chemical profiles in pyroxenite-peridotite associations from the Northern Apennine ophiolitic mantle sequences (External Liguride Units, Italy), and investigate the extent and mechanism driving the local modification of peridotite by the interaction with pyroxenite-derived melt. Pyroxenites occur as cm-thick layers parallel to mantle tectonite foliation and show diffuse orthopyroxene-rich reaction rims along the pyroxenite-peridotite contact. Relative to distal unmodified peridotites, wall-rock peridotites show i) modal orthopyroxene enrichment at the expense of olivine, ii) higher Al, Ca, Si contents and slightly lower XMg, iii) Al-richer spinel and lower-XMg pyroxenes. Clinopyroxenes from wall-rock peridotites exhibit variable LREE-MREE fractionation, always resulting in SmN/NdN ratios lower than distal peridotites. From the contact with pyroxenite layers, peridotite clinopyroxenes record a REE compositional gradient up to about 15\u202fcm marked by an overall REE increase away from the pyroxenite. Beyond 15\u202fcm, and up to 23\u202fcm, the MREE and HREE content decreases while the LREEs remain at nearly constant abundances. This REE gradient is well reproduced by a two-step numerical simulation of reactive melt percolation assuming variable amounts of olivine assimilation and pyroxene crystallization. Percolative reactive flow at decreasing melt mass and rather high instantaneous melt/peridotite ratio (initial porosity of 30%), combined with high extents of fractional crystallization (i.e. relatively low Ma/Mc ratio), accounts for the overall REE enrichment in the first 15\u202fcm. Change of melt-rock reaction regime, mostly determined by the drastic decrease of porosity (\u3a6i\u202f=\u202f0.01) due to increasing crystallization rates, results in more efficient chemical buffering of the host peridotite on the HREE composition of the differentiated liquids through ion-exchange chromatographic-type processes, determining the observed increase of the LREE/HREE ratio. Emplacement of thin (cm-sized) pyroxenite veins by deep melt infiltration is able to metasomatize a much larger volume of the host peridotite. Hybrid mantle domains made by pyroxenite, metasomatized peridotite and unmodified peridotite potentially represent mantle sources of E-MORB. Results of this work stress the key role of melt-peridotite reactions in modifying the upwelling mantle prior to oceanic basalts production
- âŠ