19 research outputs found

    Quantifying the Impact of Rare and Ultra-rare Coding Variation across the Phenotypic Spectrum

    Get PDF
    There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased hospitalization, and reduced age at enrollment. Gene sets implicated from GWASs did not show a significant protein-truncating variants burden beyond what was captured by established Mendelian genes. In conclusion, we provide a thorough investigation of the impact of rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.Peer reviewe

    Testing the role of predicted gene knockouts in human anthropometric trait variation

    Get PDF
    National Heart, Lung, and Blood Institute (NHLBI) S.L. is funded by a Canadian Institutes of Health Research Banting doctoral scholarship. G.L. is funded by Genome Canada and Génome Québec; the Canada Research Chairs program; and the Montreal Heart Institute Foundation. C.M.L. is supported by Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A); and the Li Ka Shing Foundation. N.S. is funded by National Institutes of Health (grant numbers HL088456, HL111089, HL116747). The Mount Sinai BioMe Biobank Program is supported by the Andrea and Charles Bronfman Philanthropies. GO ESP is supported by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO, RC2 HL-102924 to WHISP). The ESP exome sequencing was performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL- 102926 to SeattleGO). EGCUT work was supported through the Estonian Genome Center of University of Tartu by the Targeted Financing from the Estonian Ministry of Science and Education (grant number SF0180142s08); the Development Fund of the University of Tartu (grant number SP1GVARENG); the European Regional Development Fund to the Centre of Excellence in Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and through FP7 (grant number 313010). EGCUT were further supported by the US National Institute of Health (grant number R01DK075787). A.K.M. was supported by an American Diabetes Association Mentor-Based Postdoctoral Fellowship (#7-12-MN- 02). The BioVU dataset used in the analyses described were obtained from Vanderbilt University Medical Centers BioVU which is supported by institutional funding and by the Vanderbilt CTSA grant ULTR000445 from NCATS/NIH. Genome-wide genotyping was funded by NIH grants RC2GM092618 from NIGMS/OD and U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access publication charges for this article was provided by a block grant from Research Councils UK to the University of Cambridge

    Testing the role of predicted gene knockouts in human anthropometric trait variation

    Get PDF
    National Heart, Lung, and Blood Institute (NHLBI) S.L. is funded by a Canadian Institutes of Health Research Banting doctoral scholarship. G.L. is funded by Genome Canada and Génome Québec; the Canada Research Chairs program; and the Montreal Heart Institute Foundation. C.M.L. is supported by Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A); and the Li Ka Shing Foundation. N.S. is funded by National Institutes of Health (grant numbers HL088456, HL111089, HL116747). The Mount Sinai BioMe Biobank Program is supported by the Andrea and Charles Bronfman Philanthropies. GO ESP is supported by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO, RC2 HL-102924 to WHISP). The ESP exome sequencing was performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL- 102926 to SeattleGO). EGCUT work was supported through the Estonian Genome Center of University of Tartu by the Targeted Financing from the Estonian Ministry of Science and Education (grant number SF0180142s08); the Development Fund of the University of Tartu (grant number SP1GVARENG); the European Regional Development Fund to the Centre of Excellence in Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and through FP7 (grant number 313010). EGCUT were further supported by the US National Institute of Health (grant number R01DK075787). A.K.M. was supported by an American Diabetes Association Mentor-Based Postdoctoral Fellowship (#7-12-MN- 02). The BioVU dataset used in the analyses described were obtained from Vanderbilt University Medical Centers BioVU which is supported by institutional funding and by the Vanderbilt CTSA grant ULTR000445 from NCATS/NIH. Genome-wide genotyping was funded by NIH grants RC2GM092618 from NIGMS/OD and U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access publication charges for this article was provided by a block grant from Research Councils UK to the University of Cambridge

    Testing the role of predicted gene knockouts in human anthropometric trait variation

    Get PDF
    National Heart, Lung, and Blood Institute (NHLBI) S.L. is funded by a Canadian Institutes of Health Research Banting doctoral scholarship. G.L. is funded by Genome Canada and Génome Québec; the Canada Research Chairs program; and the Montreal Heart Institute Foundation. C.M.L. is supported by Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A); and the Li Ka Shing Foundation. N.S. is funded by National Institutes of Health (grant numbers HL088456, HL111089, HL116747). The Mount Sinai BioMe Biobank Program is supported by the Andrea and Charles Bronfman Philanthropies. GO ESP is supported by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO, RC2 HL-102924 to WHISP). The ESP exome sequencing was performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL- 102926 to SeattleGO). EGCUT work was supported through the Estonian Genome Center of University of Tartu by the Targeted Financing from the Estonian Ministry of Science and Education (grant number SF0180142s08); the Development Fund of the University of Tartu (grant number SP1GVARENG); the European Regional Development Fund to the Centre of Excellence in Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and through FP7 (grant number 313010). EGCUT were further supported by the US National Institute of Health (grant number R01DK075787). A.K.M. was supported by an American Diabetes Association Mentor-Based Postdoctoral Fellowship (#7-12-MN- 02). The BioVU dataset used in the analyses described were obtained from Vanderbilt University Medical Centers BioVU which is supported by institutional funding and by the Vanderbilt CTSA grant ULTR000445 from NCATS/NIH. Genome-wide genotyping was funded by NIH grants RC2GM092618 from NIGMS/OD and U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access publication charges for this article was provided by a block grant from Research Councils UK to the University of Cambridge

    Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P&lt;5&times;10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    The genetic architecture of type 2 diabetes

    No full text
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes. © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

    Rare variants in <em>PPARG</em> with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes.

    No full text
    Peroxisome proliferator-activated receptor gamma (PPARG) is a master transcriptional regulator of adipocyte differentiation and a canonical target of antidiabetic thiazolidinedione medications. In rare families, loss-of-function (LOF) mutations in PPARG are known to cosegregate with lipodystrophy and insulin resistance; in the general population, the common P12A variant is associated with a decreased risk of type 2 diabetes (T2D). Whether and how rare variants in PPARG and defects in adipocyte differentiation influence risk of T2D in the general population remains undetermined. By sequencing PPARG in 19,752 T2D cases and controls drawn from multiple studies and ethnic groups, we identified 49 previously unidentified, nonsynonymous PPARG variants (MAF &lt; 0.5%). Considered in aggregate (with or without computational prediction of functional consequence), these rare variants showed no association with T2D (OR = 1.35; P = 0.17). The function of the 49 variants was experimentally tested in a novel high-throughput human adipocyte differentiation assay, and nine were found to have reduced activity in the assay. Carrying any of these nine LOF variants was associated with a substantial increase in risk of T2D (OR = 7.22; P = 0.005). The combination of large-scale DNA sequencing and functional testing in the laboratory reveals that approximately 1 in 1,000 individuals carries a variant in PPARG that reduces function in a human adipocyte differentiation assay and is associated with a substantial risk of T2D
    corecore