1,986 research outputs found
Striatal Hypodensities, Not White Matter Hypodensities on CT, Are Associated with Late-Onset Depression in Alzheimer's Disease
This study examined whether there were neuroanatomical differences evident on CT scans of individuals with dementia who differed on depression history. Neuroanatomical variables consisted of visual ratings of frontal lobe deep white matter, subcortical white matter, and subcortical gray matter hypodensities in the CT scans of 182 individuals from the Study of Dementia in Swedish Twins who were diagnosed with dementia and had information on depression history. Compared to individuals with Alzheimer's disease and no depression, individuals with Alzheimer's disease and late-onset depression (first depressive episode at age 60 or over) had a greater number of striatal hypodensities (gray matter hypodensities in the caudate nucleus and lentiform nucleus). There were no significant differences in frontal lobe deep white matter or subcortical white matter. These findings suggest that late-onset depression may be a process that is distinct from the neurodegenerative changes caused by Alzheimer's disease
Hemodynamic mechanisms underlying prolonged post-faint hypotension
During hypotension induced by tilt-table testing, low presyncopal blood pressure (BP) usually recovers within 1 min after tilt back. However, in some patients prolonged post faint hypotension (PPFH) is observed. We assessed the hemodynamics underlying PPFH in a retrospective study. Seven patients (2 females, aged 31-72 years) experiencing PPFH were studied. PPFH was defined as a systolic BP below 85 mmHg for at least 2 min after tilt back. In 6 out of 7 presyncope was provoked by 0.4 mg sublingual NTG, administered in the 60° head-up tilt position following head-up tilt for 20 min. Continuous BP was monitored and stroke volume (SV) was computed from pressure pulsations. Cardiac output (CO) was calculated from SV × heart rate (HR); and total peripheral resistance (TPR) from mean BP/CO. Left ventricular contractility was estimated by dP/dt (max) of finger pressure pulse. Systolic BP (SYS), diastolic BP (DIAS) and HR during PPFH were lower compared to baseline: SYS 75 ± 14 versus 121 ± 18 mmHg, DIAS 49 ± 9 versus 71 ± 9 mmHg and HR 52 ± 14 versus 67 ± 12 beats/min (p < 0.05). Marked hypotension was associated with a 47% fall in CO 3.1 ± 0.6 versus 5.9 ± 1.3 L/min (p < 0.05) and decreases in dP/dt, 277 ± 77 versus 759 ± 160 mmHg/s (p < 0.05). The difference in TPR was not significant 1.1 ± 0.3 versus 1.0 ± 0.3 MU (p = 0.229). In four patients, we attempted to treat PPFH by 30° head-down tilt. This intervention increased SYS only slightly (to 89 ± 12 mmHg). PPFH seems to be mediated by severe cardiac depressio
Preventing child drowning in the Philippines: the need to address the determinants of health
Drowning is a public health issue in the Philippines, with children at significantly increased risk. Determinants of health (DoH) such as education, socio-economic status, ethnicity, and urbanization are factors that impact drowning risk. As drowning is a multisectoral issue, a national drowning prevention plan can drive collaboration with relevant stakeholders. This study reports trends in unintentional child (0–14 years) drowning in the Philippines (incidence, rates, and trends over time for fatal and non-fatal (years lived with a disability (YLDs) and disability adjusted life years (DALYs) from 2008–2017 and conducts an analysis of the Philippines’ Multisector Action Plan (MSAP) on Drowning Prevention. From 2008–2017, 27,928 (95%UI [Uncertainty Interval]: 22,794–33,828) children aged 0–14 years died from drowning (52.7% aged 5–14 years old). Rates of drowning have declined among both age groups, with greater reductions seen among 0–4 year olds (y = −0.3368x + 13.035; R2 = 0.9588). The MSAP has 12 child drowning-specific activities and 20 activities were identified where DoH will need to be considered during development and implementation. The MSAP activities, and work done to prevent drowning more generally, must consider DoH such as education, urbanization, water and sanitation health, and safe water transportation. A national drowning surveillance system and investment in research in the Philippines are recommended
Recommended from our members
Cardiac Biomarkers and Risk of Atrial Fibrillation in Chronic Kidney Disease: The CRIC Study.
Background We tested associations of cardiac biomarkers of myocardial stretch, injury, inflammation, and fibrosis with the risk of incident atrial fibrillation (AF) in a prospective study of chronic kidney disease patients. Methods and Results The study sample was 3053 participants with chronic kidney disease in the multicenter CRIC (Chronic Renal Insufficiency Cohort) study who were not identified as having AF at baseline. Cardiac biomarkers, measured at baseline, were NT-proBNP (N-terminal pro-B-type natriuretic peptide), high-sensitivity troponin T, galectin-3, growth differentiation factor-15, and soluble ST-2. Incident AF ("AF event") was defined as a hospitalization for AF. During a median follow-up of 8 years, 279 (9%) participants developed a new AF event. In adjusted models, higher baseline log-transformed NT-proBNP (N-terminal pro-B-type natriuretic peptide) was associated with incident AF (adjusted hazard ratio [HR] per SD higher concentration: 2.11; 95% CI, 1.75, 2.55), as was log-high-sensitivity troponin T (HR 1.42; 95% CI, 1.20, 1.68). These associations showed a dose-response relationship in categorical analyses. Although log-soluble ST-2 was associated with AF risk in continuous models (HR per SD higher concentration 1.35; 95% CI, 1.16, 1.58), this association was not consistent in categorical analyses. Log-galectin-3 (HR 1.05; 95% CI, 0.91, 1.22) and log-growth differentiation factor-15 (HR 1.16; 95% CI, 0.96, 1.40) were not significantly associated with incident AF. Conclusions We found strong associations between higher NT-proBNP (N-terminal pro-B-type natriuretic peptide) and high-sensitivity troponin T concentrations, and the risk of incident AF in a large cohort of participants with chronic kidney disease. Increased atrial myocardial stretch and myocardial cell injury may be implicated in the high burden of AF in patients with chronic kidney disease
Large emissions from floodplain trees close the Amazon methane budget
Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources
Tests of the Equivalence Principle with Neutral Kaons
We test the Principle of Equivalence for particles and antiparticles, using
CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time,
we search for possible annual, monthly and diurnal modulations of the
observables |eta_{+-}| and phi_{+-}, that could be correlated with variations
in astrophysical potentials. Within the accuracy of CPLEAR, the measured values
of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the
gravitational potential. We analyze data assuming effective scalar, vector and
tensor interactions, and we conclude that the Principle of Equivalence between
particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9},
respectively, for scalar, vector and tensor potentials originating from the Sun
with a range much greater than the distance Earth-Sun. We also study
energy-dependent effects that might arise from vector or tensor interactions.
Finally, we compile upper limits on the gravitational coupling difference
between K0 and K0bar as a function of the scalar, vector and tensor interaction
range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl)
incorporate
Recommended from our members
Biological, clinical and population relevance of 95 loci for blood lipids.
Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD
Pediatric melanoma: Analysis of an international registry
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101810/1/cncr28289.pd
- …