10 research outputs found

    Innerspec: Technical Report

    Get PDF
    In this report we describe “InnerSpec”, an approach for symmetric object detection that is based both on the com- putation of a symmetry measure for each pixel and on gra- dient information analysis. The symmetry value is obtained as the energy balance of the even-odd decomposition of an oriented square patch with respect to its central axis. Such an operation is akin to the computation of a row-wise con- volution in the midpoint. The candidate symmetry axes are then identified through the localization of peaks along the direction perpendicular to each considered angle. These axes are finally evaluated by computing the image gradient in their neighborhood, in particular checking whether the gradient information displays specular characteristics

    Machine learning techniques for MRI feature-based detection of frontotemporal lobar degeneration

    Get PDF
    Making a diagnosis of neurodegenerative diseases at an early stage is one of the most significant challenges of modern neuroscience. Although this family of diseases remains without a cure, the effectiveness of their medical treatment largely relies on the timing of their detection. For certain groups of diseases, such as Fronto-Temporal Dementia (FTD), trained professionals can effectively reach a correct diagnosis through the visual analysis of Magnetic Resonance Imaging, in its functional (fMRI) or raw (MRI) version. However, this operation is time-consuming and may be subject to personal interpretation. In this paper, we explore the performance of a group of machine learning algorithms to formulate a correct FTD diagnosis, in order to provide medical professionals with a supporting tool. The dataset consists of MRI data acquired on 30 subjects, and the experiments are carried out by investigating different fMRI techniques based on a Multi-Voxel Pattern Analysis (MVPA) approach. The results obtained show high accuracy in identifying FTD in elderly patients when Support Vector Machine and Random Forest techniques are used, with outcomes varying based on the fMRI methods

    The Mirror Transform

    Get PDF
    This paper explains how to describe any finite-energy signal through a unique representation consisting of an ordered set of positions and a sparse set of signals. This is obtained by designing an iterative decomposition through a series of mirror operations around those positions. The purpose is to find at any step of the decomposition the location that provides for the maximum decoupling between the even and odd components of the signal with respect to it. By limiting such even and odd components on three separate information bearing support, the algorithm can be iterated at infinity determining a sequence of positions. The per location information determines the optimal energy decoupling strategy at each stage providing remarkable sparsity in the representation. The resulting transformation leads to a 1-to-1 mapping. The approach is easily extended to finite-energy sequences, and in particular for sequences of finite length N, at most N iterations of the decomposition are required. Thanks to the sparsity of the resulting representation, experimental simulations demonstrate superior approximation capabilities of this proposed non-linear Mirror Transform with potential application in many domains such as approximation and coding. Its implementation has been made publicly available

    Iterative Mirror Decomposition for Signal Representation

    Get PDF
    In this paper it is shown how to describe any finite-energy continuous or discrete signal through an ordered set of positions to uniquely represent it. This is obtained by designing an iterative decomposition through a series of mirror operations around those positions. The purpose is to find at any step of the decomposition the location that provides for the maximum decoupling between the even and odd components of the signal with respect to it. The algorithm can then be iterated at infinity determining a sequence of positions. The per location information determines the optimal energy decoupling strategy at each stage providing remarkable sparsity in the representation. Thanks to the sparsity of the resulting representation, experimental simulations demonstrate superior approximation capabilities of this proposed non-linear mirror transform

    Combining Appearance and Gradient Information for Image Symmetry Detection

    No full text
    This work addresses the challenging problem of reflection symmetry detection in unconstrained environments. Starting from the understanding on how the visual cortex manages planar symmetry detection, it is proposed to treat the problem in two stages: i) the design of a stable metric that extracts subsets of consistently oriented candidate segments, whenever the underlying 2D signal appearance exhibits definite near symmetric correspondences; ii) the ranking of such segments on the basis of the surrounding gradient orientation specularity, in order to reflect real symmetric object boundaries. Since these operations are related to the way the human brain performs planar symmetry detection, a better correspondence can be established between the outcomes of the proposed algorithm and a human-constructed ground truth. When compared to the testing sets used in recent symmetry detection competitions, a remarkable performance gain can be observed. In additional, further validation has been achieved by conducting perceptual validation experiments with users on a newly built dataset

    Comparison of standard reading and computer aided detection (CAD) on a national proficiency test of screening mammography

    No full text

    Rare Single Nucleotide and Copy Number Variants and the Etiology of Congenital Obstructive Uropathy: Implications for Genetic Diagnosis

    No full text
    Significance StatementCongenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available.BackgroundCongenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification.MethodsWe performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction (n=321), ureterovesical junction obstruction/congenital megaureter (n=178), and COU not otherwise specified (COU-NOS; n=234).ResultsWe identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU.ConclusionsWe established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis

    Rare single nucleotide and copy number variants and the etiology of congenital obstructive uropathy : implications for genetic diagnosis

    No full text
    Significance statement: Congenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available. Background: Congenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification. Methods: We performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction ( n =321), ureterovesical junction obstruction/congenital megaureter ( n =178), and COU not otherwise specified (COU-NOS; n =234). Results: We identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU. Conclusions: We established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis
    corecore