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Abstract

In this report we describe “InnerSpec”, an approach for

symmetric object detection that is based both on the com-

putation of a symmetry measure for each pixel and on gra-

dient information analysis. The symmetry value is obtained

as the energy balance of the even-odd decomposition of an

oriented square patch with respect to its central axis. Such

an operation is akin to the computation of a row-wise con-

volution in the midpoint. The candidate symmetry axes are

then identified through the localization of peaks along the

direction perpendicular to each considered angle. These

axes are finally evaluated by computing the image gradient

in their neighborhood, in particular checking whether the

gradient information displays specular characteristics.

1. Introduction and Related Work

In this paper a novel reflection symmetry detection algo-

rithm for natural images (“InnerSpec”) is described. The

core of the method presented here relies on how symmetric

is a patch around its central point by computing its auto-

convolution in the direction orthogonal to a given reflection

axis, with varying angle. When the patch (i.e. the whole

image) is rotated in such a way that the reflection axis be-

comes vertical, the auto-convolution is computed row-wise

and thus it is still a combination of 1D computations in

the end. It is important to note, though, that the symme-

try computation on a single row can be affected by “noise”,

i.e. the possible presence of non-symmetric and highly en-

ergetic content out of the bounds of the symmetric object.

However, the fact that adjacent rows are used as well in the

2D patch helps to smooth out possible noisy results in such

rows, so the true symmetry axis can be correctly identified.

The core computation, that is the auto-convolution of

a patch, has been proposed in a different form in [8] as a

Planar Reflective Symmetry Transform (PRST). A 1D ver-

sion of the patch auto-convolution was also analogously de-

scribed in [3], that was employed in a very different context

to find hierarchies of symmetries in 1D discrete sequences.

As it turns out, the patch auto-convolution is used here with

some key differences w.r.t. what was done in both [8] and

[3]. Such differences will be pointed out in the following

Sections. Moreover a similar procedure, though acting on

extracted interest points, entered the 2013 CVPR competi-

tion as well [4]. According to the survey paper for the 2013

workshop [5], that procedure was clearly outperformed by

two other methods participating to the workshop [6][7].

However, the results were deemed to be not much satisfac-

tory, so that the authors in [2] proposed searching for sym-

metry axes in natural images as an effective Turing test to

replace character-based queries. Recently, another method

has been proposed that further improves performance [1]. It

extracts multi-scale 4D Appearance of Structure descriptors

which are based on the detection of important edges. This

method, although highly effective for images with sharp

edges, incurs into some difficulties when dealing with natu-

ral images with background noise or too small objects.

As a matter of fact, using just a mathematical tool such

as the patch auto-convolution to find data symmetries as a

method for detecting symmetric objects has twofold limita-

tions: first, what we perceive as a symmetric object may not

correspond to a significant symmetry in the actual data be-

cause of distortions of various types (illumination changes,

partial occlusions, etc.) that the human brain is able to fil-

ter out when recognizing the object. On the other hand,

data with a high level of symmetry may be instead classi-

fied as unimportant in the brain, and therefore the symmetry

therein goes largely unnoticed: for example, this can hap-

pen for background areas presenting symmetric patterns.

So, the gradient information can help to improve the results

obtained by just analyzing raw data symmetries.

Therefore, the symmetric object detection system that

is proposed for natural images exploits spatial correlation

properties in the data and at the same time uses relevant

image gradient information to recognize and properly place

the symmetry. In this paper it is shown how a relatively

simple processing of the gradient image can dramatically

aid the symmetry structure measure based on the data sym-

metry to improve the detection of symmetric objects.
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2. Reflection symmetry detection principles for

natural images

We begin discussing in Subsection 2.1 a theoretical frame-

work for detecting whether a given 1D discrete sequence

possesses reflection symmetry properties to some extent.

The approach is then extended to the problem of detecting

symmetric objects in natural images.

2.1. Joining Symmetry Detection and Symmetry
Perception for Natural Images

First, let us consider the problem of finding strong local re-

flection symmetries in a 1D sequence x[n]. The inner prod-

uct between x[n] and its mirrored version around m, i.e.

x[2m−n], can be computed, and the particular m that max-

imizes it identifies the best global reflection symmetry point

[3]. If a local symmetry around a given point n1 is sought

for, instead of the best global one of the entire sequence,

the inner product should be computed on a window W of

size np centered around n1, because even if a strong local

symmetry is indeed present, the rest of the sequence in far-

away positions would hurt the computation. In addition, it

is best to normalize said inner product by the energy of the

sequence in the window, so that the values computed at dif-

ferent locations can be properly compared with one another.

Of course, the window size np is the key parameter in the

whole process. In general, it would be ideal for the window

to be limited exactly by the symmetric content extent. Being

conservative by choosing a small np may hurt the symme-

try measure and drown its value among false positives that

would be abundant for small window sizes. On the other

hand, overshooting the symmetry support would introduce

non symmetric content into the computation, resulting in

noisy values for the symmetry measure.

Thus, the best local symmetry is found by sliding the

window across the sequence and computing a symmetry

measure S(n1). For a window W of size np centered

around n1, such measure is computed as follows:

S(n1) =

∑np

n=−np
x[n1 + n] · x[n1 − n]

∑np

n=−np
|x[n1 − n]|2 (1)

Next, our objective is to extend the basic mathematical tool

we just derived to solve the problem of symmetric object

detection in 2D images. To start, let us consider the case of

the search for a vertical symmetry axis, i.e. there is a hor-

izontally symmetric object in the image, clearly perceived

by the human eye. To search for symmetry axes in different

directions, it may turn convenient to rotate the image first

in such a way that the sought symmetry axis becomes verti-

cal. A batch of 1D convolutions is computed all at once for

a number of rows, in effect performing the row-wise, win-

dowed and normalized auto-convolution over a 2D square

patch. This way, we both correct for noisy placement of

symmetry due to image noise and exploit the 2D correla-

tion information present in the image.

Consequently a symmetry measure S2 can be associated

to each center of a 2D patch P as follows:

S2(P ) =

∑np

m=−np

∑np

n=−np
x[m,n] · x[m,−n]

∑np

m=−np

∑np

n=−np
|x[m,n]|2 (2)

where np has been fixed to 60 as showed in Fig. 2. For the

assessment of the PR curve, our algorithm has been tested

on a subset of the training set of the present competition

and we referred to the evaluation metric used in [5] which

is also mentioned in Subsection 3.3.

The symmetry measure in Eq. (2), as we mentioned, is

similar to the PRST described in [8]. It was computed as

the inner product between the considered function (i.e. a

3D model) and its mirrored version through a given plane γ.

Local symmetries are then found by thresholding such mea-

sure and considered maxima as candidate symmetry points.

To reduce the complexity, the symmetry measure is sampled

at regular intervals and the exact position of the symmetry is

then refined through an optimization procedure. There are

however two important differences w.r.t. the proposed algo-

rithm: the most obvious one is the fact that here the symme-

try is computed just on a local support, as on the other hand

has been already done for the PRST as well [9]. The other

one concerns how a candidate symmetry axis is not found

through a global thresholding on the symmetry measure, but

instead searching for local maxima along the direction or-

thogonal to said axis. In addition, such maxima on different

rows are connected in the direction of the candidate axis to

reinforce the belief in the symmetry presence.

So, Eq. (2) permits to detect symmetries in 2D data based

on the correlation between a patch and its reflected version.

However, using 2D contextual information to detect sym-

metries is not enough. We also employ a simple strategy to

choose among all the candidate axes those that pertain to an

interesting object as opposed to e.g. symmetric background.

This process is based on the information given by the gra-

dient image to identify the object edges and thus segment it

out of the background or non-symmetric content. In the end,

the axis of a symmetric object should lie between specular

gradient information, especially when limiting the analysis

to the most significant gradient magnitude. Thus, we pro-

pose to compare the gradient in a 2D patch around the can-

didate symmetry axis in the direction orthogonal to it as a

crude but effective way to detect the presence of a symmet-

ric object, and just implementing this approximate process

leads to a much more precise matching between perceived

symmetry and automatically detected symmetry.

3. Symmetry Axis Detection in Natural Images

In this Section, an algorithm for the identification of the

main local symmetry axes in a given image I is described.
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The discussion is targeted to the identification of symmetry

axes pertaining to foreground objects, using a pair of fea-

tures to sort out the most significant ones.

We subdivided the whole process into three main stages

as illustrated in Fig. 1. The image I first enters the symme-

try computation stage, where the objective is to compute a

symmetry value for each position of I and for each direc-

tion, using the core computation outlined in Subsection 2.1.

That information is stored into a 3D stack that is fed into

the next stage, where the symmetry axes identification takes

place. Such a process outputs a list of candidate symmetry

axes. Finally, these candidate symmetry axes (segments)

are further processed to produce a sorted list, most signifi-

cant symmetry coming first.

3.1. Symmetry Computation

The objective of the first part of the algorithm is to attribute

a symmetry value to each pixel of the image I and store that

information in a 3D stack. Such a process is composed of

three main tasks. In the first one, we rotate I by n different

angles αi that are referred to as Iαi
. The symmetry value

is calculated separately for each angle, so that all possible

symmetries can be captured independently of their tilt. Iαi

will return symmetries in the αi direction (0 ≤ αi < 180,

with αi = 180◦i/n). In our experiments we set n = 90,

giving a 2◦ slope resolution.

As described in Section 2, the auto-convolution opera-

tion applied to a sequence allows to locate the position of

the optimal symmetry axis. Since such a position is deter-

mined with a half pixel accuracy, in order to keep the patch

size consistent between integer and half-integer positions, a

columns interpolation by a factor of 2 is performed on Iαi
.

So, n images are formed, that we refer to as Ĩαi
, represent-

ing rotated and interpolated versions of the original image

I . The interpolation process may be skipped if sub-pixel

precision for the symmetry axis placement is not pursued.

Then, the level of symmetry of each pixel p of Ĩαi
is

computed. First, a 2D patch of fixed size 2np + 1 and

centered in p is extracted and then the symmetry measure

S2(P ) according to Eq. (2) is computed and associated to p.

By construction S2(P ) can assume values in [−1, 1]. Values

close to 1 (−1) are associated to even (odd) symmetries.

This process is performed for all images Ĩαi
, so that n

maps Mαi
are generated. The borders are discarded since

the patches fall outside of the image boundaries. Last, a 3D

stack of n maps, in which the i-th slice is the map Mαi
, is

constructed. We refer to such a stack as “symmetry stack”

Symmetry
Computation

Axes
Identification

Segments
Processing

Symmetry

Stack

Unsorted

Segments List

Sorted

Segments List

Input

Image

Figure 1: The three main stages of “InnerSpec”.

since it represents the local (pixel) information about the

level of symmetry. Of course the stack “wraps around”

since 0◦ and 179◦ are actually neighboring directions.

3.2. Symmetry Axes Identification

At this point all symmetry axes present in the image I can

be identified by processing the symmetry stack. In the

end, all candidate symmetry axes are extracted and mapped

back to the original image domain. The process is as fol-

lows: first, a straightforward (half-wave) rectification is per-

formed, by zeroing all negative values of the stack. Indeed,

in the previous Subsection we have mentioned that negative

coefficients may correspond to an odd symmetry. In case

such odd symmetries would be also of interest, the absolute

value of the symmetry stack should be adopted, correspond-

ing in effect to a full-wave rectification.

Following the discussion we have carried so far, one

could assume that symmetry measures close to 1 iden-

tify stronger symmetries and should be thus sufficient to

identify symmetric objects. On the contrary, we observed

experimentally that this is not necessarily true. For ex-

ample, large values can be associated to uniform back-

ground regions that correspond to highly symmetric struc-

tures. Moreover, objects that are perceived by humans as

clearly symmetric could have lower values due to shadows,

illumination changes, low resolution, etc. The use of 2D

patches may only alleviate the problem.

Instead of just taking the symmetry value, a key ob-

servation is that searching for the peaks (local maxima)

of the symmetry map is more relevant. So, the absolute

value of the coefficient is not as important as its relation-

ship w.r.t. its neighbors. All local maxima along the rows

of every symmetry map can be associated to a specific di-

rection αi. A connectivity analysis between such maxima

can be performed by means of a flood-fill algorithm. Conse-

quently, all possible reflection symmetries define a series of

segments linking connected local maxima existing in each

row. The validation of the consistency of the local maxima

through the connectivity analysis carried out along each ex-

pected orientation of symmetry is a crucial factor. This not

only reinforces the belief that a symmetry is present, but

also allows to define the extent of each symmetry segment.

In order to project back the symmetry information onto

the original image coordinate system, each map Mαi
is first

horizontally scaled down by a factor 2 to be consistent with

the size of the input image I and then rotated by −αi.

3.3. Symmetry Segments Processing

The aim of the last part of the algorithm is to remove redun-

dancy in the raw output of the axis identification process and

to assign a confidence measure to the surviving segments.

It turns out that among the list of unsorted axes there is

a significant number of symmetries that can be deemed of
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little interest for two possible reasons. First, a symmetry

axis can be associated to unperceived, mild symmetries or

to symmetries confined in small regions. On the other hand,

a symmetry axis can be detected in the same approximate

location on many slices of the stack pertaining to directions

close to one another, thus offering redundant information

for a same symmetry. These issues are managed in sequence

by two processing blocks.

For each axis, we extract a feature f1 that is the product

of its average values S2 in the symmetry stack associated

to a given symmetric segment and the square root of the

segment length l, as follows:

f1 =

∑

k S2(k)

l
·
√
l =

∑

k S2(k)√
l

(3)

Such a feature embodies a good compromise between the

symmetry measure through the average of S2 and the length

of the symmetry segment l. To make f1 comparable

across images with different sizes, l may be normalized e.g.

w.r.t. the image diagonal size. Taking the square root of l
is another compromise, trying to penalize both excessively

long segments probably corresponding to extended uniform

backgrounds and symmetries too short to be relevant.

The overlapping segments removal process handles dele-

tion of segments corresponding to the same symmetry. We

adopted a processing similar to the one involved in the eval-

uation of true positives in [5]: redundant segments are iden-

tified whenever their centers are closer than 20% of the least

of their length and at the same time the angle between them

is less than 10◦. Of the redundant set, only the segment with

the higher f1 value is kept. A sorted symmetric segment list

can be constructed, according to the associated f1 value.

Even with the expedients described so far to improve the

detection accuracy of data symmetries, such as the search

for peaks in the orthogonal direction, the candidate symme-

try axes still may correspond to a lot of false positives. To
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Figure 2: PR curves for different np, each of them obtained

varying the number of detected axes for each image. The

comparison proves the robustness of the method in relation

to the window size (the PR values are similar for different

np). np = 60 returns a slightly better result.

correct this, the idea is to favor those axes whose edge in-

formation around them is as specular as possible, hinting

at the fact that the axis is running through the center of a

symmetric object. To favor it, first we compute the gradient

image using a standard Sobel operator. The gradient mag-

nitude is normalized w.r.t. to its maximum value and then

a mask G[m,n] is obtained using a threshold M = 0.3 as

the retained most significant gradient magnitude values per-

centage, whereas the least significant are set to 0.

For each axis, a patch PA is extracted. Its starting width

is the same as the patches P used for the symmetry mea-

sure computation (namely np), and it is extended vertically

to cover all the axis locations (recall that for each axis the

image is rotated so as to have the considered axis in the ver-

tical direction). The width is then extended to a larger ng in

case not enough significant edges are covered by the patch,

in particular at least half of the rows must have at least a

non-zero mask value. The width ng cannot in any case ex-

ceed one quarter of the gradient image width.

The even-odd decomposition is performed on the gradi-

ent magnitude G[m,n] in PA, as follows:

MG(PA) =

∑m2

m=m1

∑ng

n=−ng
G[m,n1 + n] ·G[m,n1 − n]

∑m2

m=m1

∑ng

n=−ng
(G[m,n1 + n])2

(4)

where the axis is detected in the n1-th column and in the

[m1,m2] rows interval. If the gradient magnitude is approx-

imately specular around the axis, MG(PA) takes on values

close to 1, otherwise its value is around 0.

Next, the aim is to ensure that the gradient vectors with

large magnitude, as individuated by the mask MG(PA),
in mirrored position w.r.t. to the symmetry axis possess

matching directions, namely, the absolute value of the sum

of their directions should be π. Therefore, another mask

MD1(PA) is computed on the gradient directions D[m,n],
again through a normalized inner product, as follows:

MD1(PA) =

m2
∑

m=m1

ng
∑

n=−ng

D[m,n1+n]·D[m,n1−n] (5)

and then the directions mask MD(PA) is obtained as:

MD(PA)=

{

0 if |MD1(PA)− π| > π
2

1− 2|MD1(PA)−π|
π

if |MD1(PA)− π| < π
2
(6)

Finally, the masks are combined to evaluate the second fea-

ture f2 based on the gradient information:

f2 =

∑

k MG(k) ·MD(k)

l
·
√
l (7)

where the normalization by
√
l has the same function as that

in Eq. (3). So, the candidate axes found by the f1 feature

are finally sorted according to their f2 values.
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