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ABSTRACT

In this paper it is shown how to describe any finite-energy continu-
ous or discrete signal through an ordered set of positions to uniquely
represent it. This is obtained by designing an iterative decompo-
sition through a series of mirror operations around those positions.
The purpose is to find at any step of the decomposition the location
that provides for the maximum decoupling between the even and odd
components of the signal with respect to it. The algorithm can then
be iterated at infinity determining a sequence of positions. The per
location information determines the optimal energy decoupling strat-
egy at each stage providing remarkable sparsity in the representation.
Thanks to the sparsity of the resulting representation, experimental
simulations demonstrate superior approximation capabilities of this
proposed non-linear mirror transform.

Index Terms— Transforms, non-linear approximation, signal
decomposition, sparsity, symmetries.

1. INTRODUCTION

Signal decomposition is at the foundation of information representa-
tion for analysis tasks such as classification, machine learning, detec-
tion, estimation [1, 2, 3], or communication tasks. In 1822, Joseph
Fourier was the first to establish that a periodic wave could be repre-
sented as a linear combination of harmonic components of its funda-
mental frequency [4]. More so, the completeness of the representa-
tion converges at infinity in the mean square error sense towards the
representation of discontinuous waveforms. About a hundred years
later in 1909, Alfred Haar showed a converse result that a continuous
waveform in L2(R) can be represented as an infinite series of dis-
continuous functions [5]. More generally, it is common to consider
how any Hilbert space of infinite dimensionalityH that is separable
can be represented using some infinite set of functions representing
its basis set. With the concept of frames the decomposition may
be overcomplete and the representation becomes non-unique. Con-
sequently, Fourier decomposition and/or multiresolution representa-
tions have been at the base of waveform representation.

Lately, more emphasis has been devoted to the study of alterna-
tive linear expansions in the representation of any vector x inH:

x =
∑
i∈I

αiϕi ∀x ∈ H (1)

learning different sets of dictionaries that would generate sparse rep-
resentations considering the typical statistical distributions that in-
volve any real phenomenon leading to particular classes of signals
(such as natural images, individual ratings, population health, . . . ),
allowing to possibly determine good alternative sparse expansions
of waveforms [6], with further advancements for classification, com-
pressive sensing, denoising, super-resolution, data recovery, and so
on.

In a broader perspective, there have been attempts to model signal
families as lying on manifolds. These approaches try to follow signal
geometrical features [7]. This can be framed in the general context of
dimensionality reduction, where signals laying in high dimensional
spaces are approximated on a set of lower dimensional (sub)spaces.
Instead of a signal representation induced by a series of projections
on a (possibly overcomplete) basis set or through a sparse expan-
sion on a dictionary, these dimensionality reduction methods do not
achieve in general completeness since the signal can only be approx-
imated without any guarantee on the convergence of the representa-
tion error. In addition, there is no general solution to the inverse
problem of generating a signal given a manifold set, so such prob-
lem usually needs a regularization approach (e.g., see [8]).

A final attempt sharing an approximate signal representation
paradigm is based on contractive transformations. Iterative func-
tion systems (IFS) try to describe a signal through a set of base
signals and a pool of contractive transformations so that their it-
eration converges to an approximate fixed point. Whereas IFS are
quite attractive from a signal generation perspective, when the set of
transformations is estimated for signal analysis purposes, the solu-
tion to the inverse problem is difficult and there exist only bounds
on the approximation error to the original signal [9].

In this work, we want to preserve the idea of a converging repre-
sentation such that any signal x may be exactly recovered. However
this representation will not come from a projection on the space (or
a series of subspaces) spanned by a predefined sets of vectors. In-
stead, each signal is described through an iterative decomposition
into a possibly infinite unique set of orthogonal components, that
can be recombined through a chain of summations and mirroring
operations. Also differently from IFS and dimensionality reduction
methods, our approach is generative in the sense that the signal is
exactly represented and the iterative transformation applied at each
step is not found by solving an inverse problem but rather it is con-
structively generated by the characteristics of the signal itself.

At each stage of the proposed iterative transform, to achieve en-
ergy compaction the mirroring location is selected so as to provide
maximal energy concentration into a single component. The itera-
tion will thus lead to a remarkable energy compaction, so that a very
good approximation of the original signal may be constructed from
a limited set of its components. By truncating the decomposition at
some level and by recombining only its constituent components pro-
viding for the highest energy concentration, the reconstructed signal
determines the closest reconstruction of the original signal. In other
words a much sparser representation can be determined if compared
to many linear expansions thus providing a better approximation (in
the L2 sense) to the original waveform.

The paper is organized as follows. The mirror transform is de-
fined in Section 2 as the iterative even-odd decomposition modified
to pursue maximum energy decoupling in each iteration step. The
experiments in Section 3 were carried to show the sparsity proper-
ties of the mirror transform, and conclusions are drawn in Section 4.



2. THE MIRROR TRANSFORM

2.1. Optimal Symmetry Decomposition

The even-odd decomposition of an energy signal x(t) ∈ L2(R)
states that x(t) can be expressed as the sum of its even and odd
parts xe(t) and xo(t). However, the classic definition of even-odd
decomposition only considers the parity characteristics with respect
to the support midpoint. The objective now is to modify the parity
decomposition to allow it to track the inherent reflection symmetries
possibly present in x(t) as best as possible.

Generalizing the even-odd decomposition around a given time
instant t0 we have:

xe(t; t0)=
x(t)+x(2t0−t)

2
; xo(t; t0)=

x(t)−x(2t0−t)
2

(2)

We need to find the global optimal symmetry point t′0, provided we
first define what the optimality is [10]. If a signal is decidedly sym-
metric (or anti-symmetric) around a certain point t0, performing the
even-odd decomposition using that t0 as mirroring point would out-
put the even and odd signals whose energies are in great dispropor-
tion. Therefore, it is natural to search for the time instant for which
there is a maximum energy decoupling between the even and odd
parts, so the attention should focus on their energies, Ee and Eo

respectively, as t0 varies.
To find t′0, let us concentrate on the extrema of the energy of the

even part. Its value as a function of t0 is:

Ee(t0)=

∫ +∞

−∞
|xe(t; t0)|2 dt=

∫ +∞

−∞

∣∣∣∣x(t)+x(2t0−t)2

∣∣∣∣2dt =
=
1

4

∫ +∞

−∞
[ |x(t)|2+|x(2t0 − t)|2+2x(t)x(2t0 − t)]dt

(3)

where we can safely extend the integral on the whole real axis with-
out affecting the result for finite-support signals. The first two terms
in the last integral give E, the energy of x(t), since reversing the
time axis and shifting the origin do not influence the energy value.
Hence:

Ee(t0) =
1

2
E +

1

2

∫ +∞

−∞
x(t)x(2t0 − t)dt (4)

The usual definition of the linear convolution for energy signals is:

(x ∗ y)(t) =
∫ +∞

−∞
x(t′)y(t− t′)dt′ (5)

Therefore we can write (repeating the process for Eo as well):

Ee(t0)=
1

2
E+

1

2
(x∗x)(2t0); Eo(t0)=

1

2
E− 1

2
(x∗x)(2t0) (6)

So the energy of the even part is a function of t0 dictated by the
convolution of the original signal with itself – an “auto-convolution”
(which is equivalent to the cross-correlation between the signal and
its mirrored version). One could wonder if Ee admits a maximum,
which in turn would be implied by the existence of the maximum
of the auto-convolution. This can be readily seen by observing that
such a function must be limited, as implied by the Cauchy-Schwarz
inequality, and on the other hand the energy of the even part cannot
be greater than that of the original signal. Furthermore, the auto-
convolution is an integral function and therefore must be continue,

so Ee admits at least an extreme point. Of course, since there is
no closed-form formula to find the exact position of the extreme
points, we need to resort to numerical computation (which takes lin-
ear time), and then we need to test all the points to find the absolute
maximum and the associated t′0.

2.2. Decomposition Tree: the Mirror Transform and Its Inver-
sion

Let us now apply the just stated optimal symmetry decomposition in
an iterative fashion to build a decomposition tree. Such a tree repre-
sents what we refer to as the mirror transform of the signal. First, let
us assume for simplicity that the original signal x(t) has a [−T, T ]
finite support, and t′0 ∈ [−T, T ] optimally decouples the energy of
the even and odd part. Both the even and odd parts have total sup-
port 2T + 2|t′0|. However, both include a 2|t′0| long part which is
simply the tail of the original signal divided by 2 (see Fig. 1). There-
fore, it is possible to isolate the tail part and treating it as a separate
signal. The rationale behind this is that, in practice, the tail part has
undergone no modifications and thus should be handled separately.
Thus, retaining just half of the even and odd parts (the other halves
are obtainable by mirroring), a single decomposition step applied to
the root of the tree x(t) outputs three signals: a T −|t′0| long even
signal, a T−|t′0| long odd signal, and a 2|t′0| long tail signal (whose
supports sum is 2T , the support of x(t)).

These three signals are ready to be decomposed again. They
constitute the first-level nodes, x(1){E}(t), x

(1)

{O}(t) and x(1){T }(t) re-
spectively of an approximately ternary decomposition tree. The tree
is only approximately ternary because a) the tail may not exist in
the case that t′0 is exactly in the middle of the support or b) one
of the nodes may turn out to be a zero-energy signal. The latter
case could happen because the parent node is perfectly symmetric
or anti-symmetric. So, searching for the optimal symmetry point
is obviously meaningless for zero-energy signals, and the construc-
tion process of the decomposition subtree descending from any zero-
energy node should be arrested since it has no meaningful purpose.

In general, a node in the level l of the decomposition tree is re-
ferred to as x(l){S1,...,Sl}(t), where Si represent labels taking either
the value E , O or T to refer to an even, odd or tail component. In
principle, such decomposition can go on forever. The number of
nodes on a given level l increases exponentially with the level num-
ber (ignoring the possibility of zero-energy nodes) and the support
of the single nodes also tends to shrink accordingly. Each new level
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Fig. 1: The result of the optimal parity decomposition of x(t), using
t′0 as mirroring point. Note the tail part on the extreme right of the
[−T, T ] support.



shrinks the support of the children nodes, dividing in three parts the
support of the parent node, however the total support of all the nodes
at a given level is still 2T .

Given a decomposition tree, the inverse transform, which is
iterative and starting from the bottom layer of the tree, consists of
first mirroring the even and odd signals around their support mid-
point (retaining and changing the sign respectively), then adding
them and finally concatenating the tail to obtain the parent node
on the previous level, until the root is reached. For example,
x
(3)

{O,E,E}(t), x
(3)

{O,E,O}(t) and x
(3)

{O,E,T }(t) are combined to re-

construct x(2){O,E}(t). Correspondingly, the same notation applies to

the optimal symmetry points for each node. Let t(0)0 be the globally
optimal symmetry point of the root x(t). Then for each successive
level l, we define t(l)0 {S1, . . . ,Sl} as the globally optimal symmetry
point of the corresponding decomposition tree node.

As we mentioned before, the decomposition tree for continuous-
time signals can go on forever. We state here an interesting prop-
erty of such infinite decomposition. A signal x(t) is uniquely
identified by the infinite succession of symmetry points t(0)0 and
t
(l)
0 {S1, . . . ,Sl} for l = 1, . . ., besides a possible global scaling

factor K that scalar multiplies the entire signal. If two different
signals, by absurd, should share the same infinite decomposition, it
would mean that all the auto-convolution signals in each level admit
the maximum in the same position, which is impossible if the two
signals do not differ by anything besides zero-energy signals.

2.3. Discrete-Time Domain

As is imaginable, iterating the decomposition in the discrete time
setting is not as straightforward as in the continuous time case. The
most important difference is that the symmetry point n0 cannot be
arbitrary but has to correspond to either a sample (i.e., integer) or
to a half-sample position. Given the discrete nature of the signal
domain, the iteration is bound to stop when single-sample sequences
are encountered, that we refer to as “leaves”, a situation not found
for continuous-time signals. Therefore, decomposition trees for
discrete-time finite support signals are always finite, and for a L-
long sequence exactly L leaves will be reached. Using the ternary
decomposition process on discrete sequences can build a very un-
balanced tree, as its L single-valued leaves may be all over the tree
levels, depending of the particular n0 found in each of the nodes.

The number of decomposition levels in the discrete-time domain
is minimized by symmetry points found nearby the node sequences
midpoints because the maximum length of the children even/odd se-
quences is limited by approximately half that of the parent sequence
and the tail node is very short. On the other hand, symmetry points
found near the end points of the original sequence generate very
short even/odd sequences and a very long tail, almost as long as the
parent sequence. If this latter case happens frequently in the de-
composition process, the number of decomposition levels is bound
to increase. In the extreme cases, if the global symmetry is always
found in the midpoint of any given node the number of decomposi-
tion levels is dlog2 Le, while if it is always put on the first or last
sample the number of levels tends to L.

3. EXPERIMENTAL RESULTS

In this section some experiments conducted to verify the sparsity
properties of the mirror transform are reported. To that end, the
scope of the tests is of course limited for practical reasons to finite-

support signals in the discrete domain. In those cases, the decompo-
sition tree has a finite number of levels.

Specifically, we have conducted our experiments on a variety
of 1-D signal types. First, we generated some random white noise
sequences using the randn routine in Matlab R©. Next, we selected
around 30 electrocardiogram (ECG) signals, obtained with a sam-
pling frequency between 250Hz and 350Hz, taken from the MIT-
BIH Arrhythmia Database [11]. We also prepared some audio clips
of a few seconds each, from two sources: an audio signal from a
speaking source and a live rendition of “The Star-Spangled Banner”,
both sampled at CD quality. Furthermore, we have included in our
tests some seismic signals taken from the IRIS database [12]. Last,
the 1-D signals database is completed by the image rows taken from
classic images, coming in either 512×512 and 1024×1024 format,
and from a collection of texture images taken from [13].

To measure the sparsity of the information provided by the de-
composition tree leaves, we handled the decomposition process in
the same way as one would with a standard processing transform.
This way, we can compare our method with two other basic dis-
crete signal processing transforms: the Discrete Cosine Transform
(DCT) and the Discrete Wavelet Transform (DWT), implemented
using both the ‘db1’ and ‘db4’ wavelets with 5 decomposition lev-
els. The comparison has been done as follows: first, compute the
whole decomposition tree (which is at least dlog2 Le levels deep)
and then sort the L leaves according to their decreasing magnitude.
Then, discard a given percentage P of the least significant leaves (in
terms of magnitude) and compute the ratio of the energy of the error
signal in the reconstructed sequence and that of the original signal.
The same is built for the other transforms, where instead of the leaves
we discarded the least significant (frequency or time-frequency) co-
efficients in terms of their magnitude.

In Fig. 2, the average results on 106 realizations of white Gaus-
sian noise sequences with L = 103 (Fig. 2a) are reported. In ad-
dition, the standard deviation of the mirror transform performance
in terms of SNR is also depicted in Fig. 2b, showing very tight in-
tervals around the average result reported in Fig. 2a. The results
are very similar for higher L (up to 106) as well. Noise sequences
are notoriously hard to represent with frequency related transforms
given their spread-spectrum frequency content. Instead, a transform
such as the mirror transform effectively follows the locations where
to decompose the signal so that in the end a better reconstruction
of the noisy input is obtained. This happens since the mirror trans-
form maps the waveform complexity into the coupling of few sig-
nificant coefficients and of the locations n(l)

0 {S1, . . . ,Sl} combined
with extreme flexibility by the tree decomposition. This does not
in any way mean that the mirror transform is able to “compress”
noise sequences, but that it can systematically find a small subset of
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(a) Gaussian noise, L = 103.
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(b) Mirror transform for L =
103 with σ intervals.

Fig. 2: Mean reconstruction SNR for noise signals as P varies on
the x-axis.



those n(l)
0 {S1, . . . ,Sl} that allows a good reconstruction of the in-

put noise, achieving a superior degree of sparsity. Of course, due to
the random nature of the noise, even for the proposed transform the
SNR is still lower with respect to those obtained for the other types
of signals, which we analyze in the following.

Next, we show in Fig. 3 the results obtained for the rows of
four images: Lena, Baboon, the satellite image of Richmond, VA
(1024× 1024) and a texture image (brick wall pattern). For the for-
mer classic images, the mirror transform performance is comparable
with those given by the ‘db4’ wavelets, with actual values depend-
ing on the image characteristics (in particular, how many rows can
be well approximated by polynomial functions). For images with
strong presence of local symmetries like the satellite and texture im-
ages, the mirror transform performance is clearly superior.

We also show in Fig. 4 the visual appearance of a magnified
detail of the Baboon image when P = 0.95 for the proposed trans-
form and ‘db4’ DWT . In this case, we transformed separately each
row of the images and then we have retained the most significant
transform coefficient across the whole image. In accordance, the
PSNR has been computed on the whole image instead of separately
for each row. The obtained PSNR values are 29.99 dB for the mirror
transform, compared to 26.63, 28.58 and 26.76 respectively for the
DWT ‘db1’, DWT ‘db4’ and DCT. This time too, the DCT and the
DWT performance are worse than those given by the proposed trans-
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(a) Lena image.
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(b) Baboon image.
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(c) Richmond satellite image.
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(d) Texture image.

Fig. 3: Mean reconstruction SNR for image rows as P varies on the
x-axis.

(a) Detail on mirror trans-
form reconstruction.

(b) Detail on DWT ‘db4’
reconstruction.

Fig. 4: Visual results obtained with P = 0.95.

form, given that the best looking result is clearly the one obtained
using the proposed even-odd ternary decomposition tree, reinforc-
ing the impression given by the PSNR values. The mirror transform
is particularly well suited to represent local symmetries, in particular
edges and gradients, thus giving a better visual result. Of course, this
does not mean that the DCT and DWT performance are worse when
used for natural images compression, since it is well known that for
example when the 2-D DCT is employed, its strong decorrelation
properties allow for a very compact representation of visual data.

Last, the results for the other considered 1-D data types are given
in Fig. 5. For these data types as well, the comments already offered
remain valid: the signals having the greatest amount of smooth, lo-
cal symmetries have the best chances for being sparsified by the pro-
posed mirror transform, which is especially true for ECG signals.

4. CONCLUSIONS

We presented the mirror transform, that is a new signal transform
based on the iterative application of the even/odd decomposition,
valid for both continuous and discrete time domains. In the former
case, the ternary decomposition tree constituting the transform is in
principle infinitely deep even for finite support signals, while for
finite-length sequences the decomposition tree always has a finite
number of levels. Furthermore, we stated how using the proposed
transform a continuous-time signal can be equivalently represented
by an exponentially increasing number of symmetry positions, high-
lighting an interesting connection between sparsity and symmetry.

We employed the proposed mirror transform in a variety of
experiments, aimed at analyzing its sparsity properties, limiting
our scope to finite trees obtained from 1-D signals of various ori-
gin. Of course, the compactness of the alternative representation
is hampered by the amount of information concerning the symme-
try point employed in each decomposition step. Nevertheless, the
over-completeness of the signals set, implicit in the aforementioned
ability to translate a signal into a set of positions, allows for sparse
representations for signals with certain characteristics.
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(a) Audio signal (speech).
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(b) Audio signal (song).
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(c) Seismic signal.
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(d) ECG signal.

Fig. 5: Mean reconstruction SNR for the other 1-D data types.
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