9 research outputs found

    General Synthesis Report of the Different ADS Design Status. Establishment of a Catalogue of the R&D needs

    Get PDF
    This document is a General Synthesis Report of the Different ADS Design Status being designed within the EUROTRANS Integrated Project; an FP6 European commission partially funded programme. This project had the goal to demonstrate the possibility of nuclear waste transmutation/burning in Accelerator Driven Systems (ADS) at industrial scale.The focus is on a Pb-cooled ADS for the European Facility on Industrial scale Transmuter (ETD/EFIT) with a back-up solution based on an He cooled ADS.As an intermediate step towards this industrial-scale prototype, an eXperimental Transmuter based on ADS concept (ETD/XT-ADS) able to demonstrate both the feasibility of the ADS concept and to accumulate experience when using dedicated fuel sub-assemblies or dedicated pins within a MOX fuel core has been also studied.The two machines (XT-ADS and Pb cooled EFIT) have been designed in a consistent way bringing more credibility to the potential licensing of these plants and with sufficient details to allow definition of the critical issues as regards design, safety and associated technological and basic R&D needs. The different designs fit rather well with the technical objectives fixed at the beginning of the project in consistency with the European Roadmap on ADS development.For what concerns the accelerator, the superconducting LINAC has been clearly assessed as the most suitable concept for the three reactors in particular with respect to the stringent requirements on reliability. Associated R&D needs have been identified and will be focused on critical components (injector, cryomodule) long term testing.The design of the different ADS has been performed in view of what is reasonably achievable pending the completion of R&D programmes. The way the EUROTRANS Integrated Project has been organised with other domains than the DM1 Design being specifically devoted to R&D tasks in support to the overall ETD/EFIT and ETD/XT-ADS design tasks has been helpful. The other domains were centred on the assessment of reactivity measurement techniques (DM2 ECATS), on the development of U-free dedicated fuels (DM3 AFTRA), on materials behaviour and heavy liquid metal technology (DM4 DEMETRA) and on nuclear data assessment (DM5 NUDATRA). Pending questions associated to technology gaps have been identified through the different appropriate R&D work programmes and a Catalogue of the R&D needs has been established.Finally, the work within the EUROTRANS integrated project has provided an overall assessment of the feasibility at a reasonable cost for an ADS based transmutation so that a decision can be taken to launch a detailed design and construction of the intermediate step Experimental ADS now already launched within the 7th FP programme under the name of Common Design Team (CDT)

    The Effects of Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies

    No full text
    International audienceNuclear systems, composed of reactors and fuel cycle facilities, are complex and in constant evolution. Fuel cycle scenario studies aim at evaluating the consequences of decisions taken in the near term on the eventual outcomes of a chosen fuel cycle.Scenario studies require a large amount of data and hypotheses, such as the energy demand and its evolution or the performances and characteristics of existing and future technologies. Each hypothesis, represented by a parameter, is a potential source of uncertainty that can impact the scenario outcomes. The Nuclear Energy Agency's Expert Group on Advanced Fuel Cycle Scenarios (NEA/AFCS) recently completed an activity that used sensitivity studies to evaluate the impact of uncertainty of the primary scenario input parameters on scenario results.At the beginning of the study, a base case scenario was specified and evaluated. It considers a PWR UOX reactor fleet using low enriched uranium oxide fuel and its gradual replacement by a sodium fast reactor (SFR) fleet using uranium/plutonium mixed oxide fuel. Each member of the group evaluated this scenario with its own scenario code (COSI, COSAC, FAMILY, SITON, TR_EVOL or VISION). It is noteworthy that the different codes show a good consistency in the results and that the differences have been investigated and documented in order to ensure a strong basis for comparison in the sensitivity study.Then, 17 key input parameters and their range of variation as well as 22 scenario outputs were identified and sensitivity analyses were conducted. The key parameters were chosen amongst the general assumptions on the scenario (energy demand, introduction date of fast reactor), reactors and facilities characteristics (burn-ups, losses at reprocessing) and some minor actinides recycling parameters. As far as possible, each parameter was varied independently from the others. This sensitivity study shows the relative impact of each parameter on each output metric. In order to compare the large amount of results, two methods of summarization were adopted, as described in the paper. These comparisons have shown that some parameters, such as the energetic production or the introduction date of fast reactors, have a strong impact on the results whereas others, like the UOX fabrication time, have almost no impact on the studied scenario

    CP ESFR: Collaborative Project for a European Sodium Fast Reactor

    No full text
    The Collaborative Project for a European Sodium Fast Reactor (CP ESFR) is performed (2009-2012) in the 7th European Framework Programme. It is devoted to the identification and study of innovations to be considered for the future in the core design, safety, reactor architecture, components and the dissemination of knowledge related to this technology among young European professionals.JRC.F.5-Nuclear Reactor Safety Assessmen
    corecore